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Abstract— Traffic classification and identification is a fertile
research area. Beyond Quality of Service, service differentiation,
and billing, one of the most important applications of traffic
classification is in the field of network security. This paper
proposes a packet-level traffic classification approach based on
Hidden Markov Model (HMM). Classification is performed by
using real network traffic and estimating - in a combined fashion -
Packet Size (PS) and Inter Packet Time (IPT) characteristics, thus
remaining applicable to encrypted traffic too. The effectiveness
of the proposed approach is evaluated by considering several
traffic typologies: we applied our model to real traffic traces of
Age of Mythology and Counter Strike (two Multi Player Network
Games), HTTP, SMTP, Edonkey, PPlive (a peer-to-peer IPTV
application), and MSN Messenger. An analytical basis and the
mathematical details regarding the model are given. Results show
how the proposed approach is able to classify network trafficby
using packet-level statistical properties and therefore it is a good
candidate as a component for a multi-classification framework.

I. I NTRODUCTION

Network traffic classification is the process of analyzing
traffic flows and associating them to different categories of
network applications and it represents an essential task inthe
whole chain of network security. Studies in the field of traffic
classification started in the last years, when the traditional use
of transport protocol ports for classification purposes became
unreliable while different kinds of new network applications
were emerging (multiplayer network games, p2p IPTV, file
sharing). Beyond the need to understand which kind of traffic
is carried on the Internet links, other main motivations for
looking for new and reliable traffic classification techniques
today are to offer proper Quality of Service (QoS) depending
on the category of traffic carried by flows, and to perform a
billing not only based on bandwidth usage but also on the
traffic category. However, in addition to these issues, someof
the most important and widely spread applications of traffic
classification pertain to network security: (i) the enforcement
of security policies on the use of different applications; (ii)
the ability to classify encrypted traffic; (iii) the identification
of malicious traffic flows. For these reasons, several new
approaches to traffic classification are being proposed and
studied. As of today, though, no definitive answer is present.
The debate in the scientific community is still open, and, as it
happened in the recent past for intrusion detection systems[1],
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approaches based on the joint work of different traffic classifi-
cation techniques (multi-classification) seem to be among the
more promising solutions. New trends in network applications
and protocol design, indeed, make traffic classification particu-
larly difficult. Protocol encapsulation, encrypted transmission,
use of non-standard ports, concerns related to users privacy,
and need to keep up with huge traffic loads on network
links are posing tremendous limits to some of the developed
techniques. Payload inspection techniques, for example, make
application identification difficult or even impossible under
some of the above-cited conditions (mainly for both privacy
and performance issues). On the other side, approaches based
on statistical properties of the network traffic are looking
more promising and robust to encryption, protocol obfuscation,
privacy, etc.

In this paper we propose a novel classification technique
based on packet-level statistical properties of network traffic
exhibited by different applications. Specifically, we propose
the use of Packet-Level Hidden Markov Models (PL-HMMs),
that we have proposed and validated in the past for modeling
purposes [2]. In this work we present the algorithms, the
statistical properties taken in consideration, and we testthe
proposed classification approach on a set of application traffic
that ranges from traditional network applications (e.g. HTTP,
Email) to more recent ones as network games and peer-to-
peer video streaming. The presented results are encouraging
and show that the proposed PL-HMM approach may be a good
candidate as a technique to be used in a multi-classification
scenario (that is, when different classification engines are used
and their output is combined by a decision system).

The rest of the paper is organized as follows. In Section II
a brief description of the motivations is given. Section III
provides details on the analytical model at the base of our
classifier. Section IV discusses the applications considered and
the measurement approach. Finally, in Section V we show
results of traffic classification. Section VI ends the paper.

II. M OTIVATION AND RELATED WORK

Several classification techniques have recently been pre-
sented in literature. Approaches based on deep payload in-
spection are usually considered very reliable for traffic that is
not encapsulated into other application-level protocols and for
un-encrypted traffic. However, the current trends show that



the portion of encrypted traffic on the Internet is constantly
increasing [3], and several applications are using protocol
encapsulation or obfuscation to evade network policy enforced
through filtering [4]. Moreover, access to full payload is often
not possible (e.g. due to privacy issues). For these reasons,
researchers are proposing approaches that look more robust
because based on the intrinsic properties of the network traffic
as it is generated by different applications. Flow-level parame-
ters (e.g. flow duration, transmitted bytes, transmitted packets)
are a popular choice, a valid alternative or combination is to
exploit measurements coming from packet level (e.g. packet
size, inter-packet times). Several notable works [5] [6] [7] [8]
[9] presented in literature consider some of these properties
to build classification features, and then use statistical or
machine learning approaches to classification. Results show
that a perfect classification approach does not exist. The use of
different features and classifiers can bring more accuracy under
some conditions or in identifying some applications while may
not be satisfying in other cases. It is therefore probable that
in the future we will see multi-classifier approaches, able to
collect the advantages of different techniques and compensate
for each weakness, being proposed.

In this paper we propose a technique for traffic classification
based on a statistical approach that takes into account some
new packet-level properties of network traffic, trying to offer
a contribution in terms of techniques to exploit intrinsic prop-
erties of traffic generated by different network applications.
Indeed, as explained in the following sections, the use of PL-
HMMs allows us to take into account joint characteristics of
inter-packet times (IPT) and payload size (PS), as well as
their temporal correlation. We use studies from our modeling
work based on HMMs [2]: the traffic generated by a specific
application is modeled as a flow of packets, seen as a sequence
of (IPT,PS) pairs generated according to different distributions
depending on the hidden state of the source.

In [8], HMMs have been used, and compared with other
techniques, for traffic classification of flows at an early stage.
Sequences made of only the first 4 to 10 packets were used
to train HMMs and to attempt flow classification. However,
differently from our work, only packet sizes were considered
in this paper. An approach based on profile HMMs has been
proposed in [10]. This work is very different from ours,
in that the authors present two separate classifiers working
separately on IPTs or on PSs, and a left-to-right structure for
the state topology of the HMM is used. However, a proposal
for extending their approach was later presented in a technical
report [11], where they try to account for joint IPT and PS
modeling via vector quantization. Proposed profile HMMs
in [11] present a very complex state structure depending on
the length of the training sequence, with a pair of different
states for each packet. They are designed for one-dimensional
observable variables. IPT and PS joint information is taken
into account via vector quantization, thus a codebook labeling
IPT and PS allowed pairs is used as observable variable.
Furthermore, a heuristic technique, namely model surgery,
is needed to account for different trace lengths. As it will
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Fig. 1. Architecture of the classifier.

be clear in the next section, compared to [11], the model
proposed in this paper works directly on a two-dimensional
observable variable, thus exploits IPT and PS joint information
without needing any pre-processing like vector quantization.
Our approach presents a fully-connected structure for the state
topology that allows an enormous reduction of the number of
states, avoids post-processing like model surgery, and although
being much less structured than the profile HMMs with respect
to the traffic characteristics is still able to achieve good
classification results.

III. T HE ANALYTICAL MODEL

Notation - Column vectors are denoted with lower-case
bold letters, withai denoting theith element of vectora;
matrices are denoted with upper-case bold letters, withAi,j

denoting the(i, j)th element of matrixA; (.)T and E{.}
denote transpose and expectation operators;a|b = b0 denotes
the conditional random variablea given that b = b0; the
symbol∼ means “distributed as”.

Figure 1 shows the general system architecture that we
are considering for traffic classification. It is composed by
a bank of parallel PL-HMMs and a multi-input single-output
block pointing at the maximum input. In order to capture the
characteristics ofN different typologies of network traffic,
it is assumed that theN different PL-HMMs in the bank
have been obtained via the Baum-Welch training proposed in
[2]. The Baum-Welch algorithm [12] is an iterative procedure
that looks for model parameters maximizing the probability
that the model itself generates the sequences used as training
set. Each PL-HMM of the bank is then used to compute
the likelihood (λn), representing the probability that the test
sequence belongs to the traffic typology associated to the PL-
HMM. The maximum likelihood then selects the best estimate
for the traffic typology.

A. PL-HMM

The single PL-HMM is an HMM composed by a discrete
hidden state variablex[ℓ] ∈ {s1, . . . , sK} and a continuous bi-
dimensional observable variable,y[ℓ] = (d[ℓ], b[ℓ])

T, whereK
denotes the number of the states for the HMM,d[ℓ] denotes
10 log10(IPT/1µs) andb[ℓ] denotes PS of theℓth packet. IPT
and PS are jointly described with memory and correlation



taken into account by the state variable, and assumed statisti-
cally independent given the state.

The single PL-HMM is characterized by the set of pa-
rametersM = {A, g(t), w(t), g(p), w(p)}, denoting the state
transition matrix, the conditional IPT and PS distribution
vectors, respectively, i.e.

• Ai,j = Pr(x[ℓ + 1] = sj |x[ℓ] = si);
• d[ℓ]|x[ℓ] = si ∼ Gamma(g

(t)
i , w

(t)
i );

• b[ℓ]|x[ℓ] = si ∼ Gamma(g
(p)
i , w

(p)
i ).

It is apparent the Markovian assumption for the hidden state.
The conditional (inith state) pdf’s for IPT and PS, are
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It is worth noticing that, according to our notation, the
IPT-PS sequenceY = (y[1], . . . , y[L]) corresponds to the
following pair of sequences:D = (d[1], . . . , d[L]) for IPT
values andB = (b[1], . . . , b[L]) for PS values.

B. Likelihood Computation

The likelihoodλ = Pr(Y|M) of an IPT-PS sequenceY,
given the modelM, is computed exploiting the dependen-
cies captured by the model in both forward and backward
directions. The Forward-Backward algorithm [12] is an effi-
cient technique to compute the Forward variableα and the
Backward variableβ in a graphical model, i.e. the variables
capturing such dependencies. More specifically, for HMM
structures it is based on the following equations

αj [ℓ] =

K∑

i=1

αi[ℓ − 1]Ai,jf
(t)
j (d[ℓ])f

(p)
j (b[ℓ]) ,

βi[ℓ] =

K∑

j=1

Ai,jf
(t)
j (d[ℓ + 1])f

(p)
j (b[ℓ + 1])βj [ℓ + 1] .

Basing on these formulas, the likelihood for an IPT-PS se-
quenceY is computed as

λ = Pr(Y|M) =

K∑

i=1

αi[ℓ]βi[ℓ] ,

for an arbitraryℓ. The Forward-Backward algorithm is typi-
cally implemented in the log-domain.

C. Trained PL-HMMs

Our trained PL-HMMs presentK = 4 to K = 7 states,
depending on the complexity of the protocol. We tried to keep
the number of states as low as possible in order to contain
computational complexity, and at the same time provide suf-
ficient accuracy in modeling the characteristics of a specific a
network-traffic typology.

The starting set of parameters for the training algorithm is
chosen in order to cover almost uniformly the whole range of
observed IPT and PS values. Convergence of the Baum-Welch
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(a) Normalized histogram of the training set, pdf of the starting PL-
HMM, pdf of the trained PL-HMM.
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(b) IPT-PS auto- and cross-covariance for the training set,the starting
PL-HMM, the trained PL-HMM.

Fig. 2. PL-HMM characteristics.

training for all typologies was reached in a few (less than10)
iterations.

Figure 2 shows the characteristics of the PL-HMM trained
to model SMTP traffic (please refer to Section IV for a
description of all the applications considered in this work).
From this figure, it is clear how first and second order
statistics are captured by the model. This is shown also to
give an intuitive idea of how packet-level properties related
to marginal distributions, time dependence, and mutual de-
pendence between IPT and PS, are captured by a trained PL-
HMM made of few parameters, that can then be exploited
for classification purposes. Table I shows the state parameters
for the trained PL-HMM in which each state corresponds to
a different short-time behavior of the application in termsof
IPT and PS generation, for more details refer to [2]. Similar
behavior in terms of modeling capabilities have been obtained
for each of the traffic typologies described in Section IV.

Global statistics (average value and standard deviation) of



TABLE I

SMTP:STATE PARAMETERS.
PS IPT

g
(t)
i

w
(t)
i

g
(p)
i

w
(p)
i

1st state 196.91 0.28 0.15 308.12
2nd state 1.86 9.03 2.23 215.2
3rd state 22.94 1.07 1504 0.95
4th state 54 0.95 32.33 35.9
5th state 9.23 4.23 229828 0.0006

TABLE II

TRAINING SETS STATISTICS.
IPT [dBµ] PS [bytes]

mean std dev. mean std dev.

AoM 47 9 13 4
CS 48 10 29 25

Edonkey 49 10 1182 377
HTTP 48 13 703 460
MSN 56 15 575 572

PPLive 66 4 177 271
SMTP 41 18 616 624

the training sets used to characterize each traffic typologyare
shown in Table II. It is easy to notice that IPT and PS joint
characterization is needed in order to aim at successful clas-
sification. Also, analyzing differences and similarities among
traffic characteristics, it is not surprising that, anticipating the
results shown in Section V, AoM and PPlive will present
the two best performance for correct classification, while
the the worst performance for misclassification will be when
confusing Edonkey with SMTP and SMTP with MSN.

IV. CONSIDEREDAPPLICATIONS AND MEASUREMENT

APPROACH

We tested our algorithm over a heterogeneous set of network
applications, shown in Table III. Each of them were verified
through deep payload inspection and manual checks. The
choice of the considered applications to classify was driven by
the following multidimensional criteria: (i) both TCP and UDP
based applications; (ii) both data and signaling traffic; (iii) both
traditional and novel Internet applications. As for TCP-based
and traditional applications we considered the data trafficof
HTTP and SMTP (respectively related to Web and Email),
still responsible for a relevant portion of the overall Internet
traffic. Again, in the class of TCP-based applications and
still falling in the category of traditional Internet applications,
we considered Instant Messenging. It is used by about 50%
of the Internet users all around the world [13], with MSN
Messenger (MSN in the following) being the most popular
application. In this work we consider the traffic generated
by MSN clients [14]. Also, as last TCP-based application we
considered the traffic associated to the Edonkey protocol [15],
used by peer-to-peer file sharing applications as Emule. This
category of traffic is quite novel (compared to Web and Email
traffic) and it is particularly important because most of the
issues related to the inability to identify applications through
protocol ports started with respect to peer-to-peer file sharing
applications. As regard UDP-based and innovative (and with
QoS requirements) applications, we considered the traffic
generated by Age of Mythology (AoM) [16], a Real Time
Strategy Multiplayer game, and CounterStrike (CS) [17], one
of the most played First Person Shooter games on the Internet.

TABLE III

CONSIDEREDTRAFFIC
Training Test

flows packets bytes flows packets bytes

AoM 4 109887 1.3 M 2 55671 702 K
CS 344 35108 1 M 340 27916 881 K

Edonkey 109 245290 289 M 82 190526 228 M
HTTP 7520 311661 219 M 7771 281484 188 M
MSN 18007 902375 518 M 17836 922686 557 M
PPlive 137 4520 799 K 157 6658 713 K
STMP 50070 1385238 853 M 61738 1727850 1266 M

Finally, a category of traffic that is now constantly increasing
is peer-to-peer video streaming. Triple-player Operatorsare
interested in identifying and classifying this traffic without
damaging the privacy of the users. For this reason, we consid-
ered the signaling traffic generated by the PPlive application.
Therefore, according to our multidimensional criteria, this last
traffic typology falls in the class composed by the triple: UDP-
based application, innovative Internet service, signaling traffic.
To stress the importance of peer-to-peer video streaming traffic
in current networks, it is worth noticing that we previously
studied the traffic generated by PPlive and, while we were able
to recognize that the signaling information was transmitted
through UDP packets and the video data was carried by
TCP packets, we were not able to reliably identify all the
video streaming flows on TCP. Thus confirming that, from
the Operator point of view, the ability to recognize signaling
traffic instead of data traffic is of indisputable importance.

Except for network games, all the traffic was captured
at University of Naples “Federico II”, Italy, with the traffic
from peer-to-peer applications generated by a set of controlled
boxes. The AoM traces, instead, have been provided by the
Worcester Polytechnic Institute, MA (USA) [18]. Whereas the
CS traces have been already used for a study on network games
traffic modeling [19]. According to the results shown in [20]
we can state that the time invariance of IPT does not affect
the classification process (based on both IPT and PS).

We considered the conventional definition of flows - given
by the 4-tuple:source IP, source port, destination IP, des-
tination port - with a timeout of 60 seconds. In this study
we took into account only traffic exiting from observed hosts
(e.g. packets with destination port 80 or 25 for HTTP and
SMTP respectively, packets sent by observed machines in the
case of peer-to-peer applications, etc.), neglecting flowsin
the opposite direction. We separated the available flows in
two separate sets: atraining set used for training the PL-
HMM and thus building the models, and atest set used to
verify the classifier. Flows with less than 10 packets have
been excluded both from training and test sets in order
to avoid numerical problems running the algorithms. From
each considered flow we extracted sequences of IPT and PS.
Since we wanted to characterize the traffic generated by the
applications, independent as much as possible of the transport
protocols, we dropped all packets with empty payload, as TCP-
specific traffic, like connection establishment packets (SYN-
ACK-SYNACK) and pure acknowledgment packets. For the
same reason, in the estimation of the PS, we measured the
byte length of the TCP/UDP payload.



TABLE IV

CLASSIFICATION RESULTS: CONFUSIONMATRIX
AoM CS Edonkey HTTP MSN PPlive SMTP

AoM 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
CS 2.94% 93.53% 2.94% 0.00% 0.29% 0.00% 0.29%

Edonkey 0.00% 1.22% 90.24% 1.22% 2.44% 1.22% 3.66%
HTTP 0.01% 0.04% 1.13% 93.35% 2.81% 0.49% 2.17%
MSN 0.00% 0.13% 2.34% 0.94% 94.16% 0.00% 2.43%
PPlive 0.00% 0.00% 0.64% 0.64% 1.91% 96.82% 0.00%
SMTP 0.00% 2.04% 2.23% 2.25% 3.25% 0.00% 90.23%

V. EXPERIMENTAL RESULTS

In Table IV we show, summarized through a confusion
matrix, the results of the classification performed on the test
sets. Each row represents in percentage the output of a run
of the classifier over a different application test set (e.g.the
cell corresponding to the HTTP row and Edonkey column
tells us that 1.13% of the flows from the HTTP test set
have been erroneously classified as Edonkey). All the correct
classification percentages are shown on the diagonal in bold.
We can see that for all the applications a correct classification
percentage above 90% is achieved, with the best results
obtained when trying to identify AoM and PPlive traffic. For
AoM the 100% percentage value is mainly explained with the
very reduced number of flows of the test set, however it is
important to note that the confusion values observable on the
AoM column show that it almost never happens that flows
from different applications are erroneously classified as AoM
(this actually happens only for CounterStrike which is a game
over UDP as AoM), demonstrating that the AoM model is very
strict in capturing AoM traffic properties. The worst results
are obtained when trying to identify Edonkey or SMTP traffic.
Here we see that there are several flows that are confused with
other applications. Probably the considered statistical proper-
ties of such flows do not fit with their corresponding models.
However, this is a typical situation in which a multi-classifier
system may override the weaknesses of a single approach by
counting also on different classification techniques basedon
other properties. Moreover, it is worth noticing that in this
work we considered only traffic in one direction for each
host, whereas by building models also for the other way and
exploiting the bond between corresponding flows in the two
directions (being both generated by the same application) it
may be possible to achieve a better accuracy. The extension
of the classifier aiming to process both traffic directions atthe
same time is currently under investigation.

VI. CONCLUSION

Traffic classification represents an essential task for both
network management architectures [23] and network security
solutions [24]. In this paper we proposed an approach for
traffic classification based on HMMs applied to packet-level
traffic parameters. Our approach, by jointly considering IPT
and PS and taking into account also their temporal structures,
is able to classify a number of traffic typologies (TCP and
UDP based, data and signaling, traditional and novel Internet
applications). We showed how the technique is able to achieve
promising results such that it may be considered as one of the
techniques to be used in a multi-classifier system. Our ongoing

work is devoted to both preliminary longitudinal/portability
analysis (i.e. training and testing stage using different traffic
traces) and enlarge the set of considered traffic typologies.
Moreover we plan to compare performance against other
classifiers.

REFERENCES

[1] G. Giacinto, F. Roli, L. Didaci, “Fusion of multiple classifiers for intrusion
detection in computer networks,”Pattern Recognition Lett., Vol. 24,
no. 12, pp. 1795–1803, Aug. 2003.
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[20] A. Botta, A. Dainotti, A. Pescapé, G. Ventre, “Searching for Invariants
in Network Games Traffic,”Poster at Co-Next 2006 Student Workshop.

[21] http://www.microsoft.com/technet/prodtechnol/
isa/2000/maintain/isaimsec.mspx, Sep. 2007.

[22] http://www.hypothetic.org/docs/msn/general/
overview.php, Sep. 2007.

[23] H. Jiang, A.W. Moore, Z. Ge, S. Jin, J. Wang, “Lightweight Application
Classification for Network Management,” SIGCOMM Work. Internet
Network Manag., Aug. 2007.

[24] O. Marques, P. Baillargeon, “Design of a multimedia traffic classifier
for Snort,” Information Manag. & Computer Security J., Vol.15, no. 2,
Jun. 2007.


