TIE: a community-oriented traffic classification
platform

Alberto Dainotti, Walter de Donato, Antonio Peséamnd Giorgio Ventre
University of Napoli “Federico II”, Italy
{alberto,walter.dedonato,pescape,giof@inina.it

Abstract— During the last years the research on network traffic However it does not directly perform traffic classificatidnut
classification has become very active. The research community, relies on external tools to use the extracted features foin su
moved by increasing difficulties in the automated identification of purpose. To the best of our knowledge the only available

network traffic and by concerns related to user privacy, stared traffic classifier impl fi hine-| ina techai
to investigate and propose classification approaches alternative '&1C Classilier impiementing a machine-iearning tectieiq

to port-based and payload-based techniques. Despite the largePresented in literature is Tstat 2.0 [10] (released at the en
quantity of works published in the past few years on this topic, of October 2008). Besides supporting classification thioug
very few implementations targeting alternative approaches were payload inspection, Tstat 2.0 is able to identify Skypefitaf
made available to the community. Moreover, most approaches p,'\sing the techniques described in [11]. However such-tech
pro?osed in Ilfjerature syfferhof problems related to the ability of niques have been specifically designed for a single apjgiicat
evaluating and comparing them. ; | -

In this paper we present a novel Community_oriented software and can not be extended to CIaSS|fy overall link traffic. Tduk|
for traffic classification called TIE, which aims at becoming of available implementations of novel approaches is in et
a common tool for the fair evaluation and comparison of with two facts: (i) scientific papers seem to confirm that it is
different techniques and at fostering the sharing of common possible to classify traffic by using properties differerdnf

implementations and data. Moreover, TIE supports the combi- o L
nation of more classification plugins in order to build multi- payload content; (i) there are strong motivations for ficaf

classifier systems, and its architecture is designed to allow classification in general, and important reasons to perform
online traffic classification. In this paper, we also present the it without relying on packet content. It has been observed
implementation of two basic techniques as classification plugins, that the novel approaches proposed in literature suffer of
which are already distributed with TIE. Finally we report on the 1 ohlems related to the ability of evaluating and comparing
development of several classification plugins, implementing novel them [12]. A first reason for this difficulty is indeed the
classification techniques, carried out through collaborations with -l - . . .
other research groups. lack of implementations allowing third parties to test the
techniques proposed with different traffic traces and under
. INTRODUCTION different situations. However, there are also difficultiekated
The problem of traffic classification (i.e. associatingficaf to, e.g., differences in the objects to be classified (flows,
flows to the applications that generated them) has attracfeB@P connections, etc.), or in the considered classes (g&peci
increasing research efforts in recent years. This happbeed applications, application categories, etc.), as well ganding
cause, lately, the traditional approach of relying on tpans the metrics used to evaluate classification performance.
level protocol ports has become largely unreliable [1]hiug To overcome these limitations, in this work we introduce
the search for alternative techniques. At first, researah am novel software tool for traffic classification call@aaffic
industry focused on approaches based on payload inspectidentification Engine(TIE). TIE has been designed as a
However, such techniques present several drawbacks prevenmmunity-oriented tool, inspired by the above observegjo
ing their deployment under realistic scenarios, e.g.:H@irt to provide researchers and practitioners a platform tolyeasi
large computational cost makes difficult to use them on highdevelop (and make available) implementations of traffissila
bandwidth links; (i) requiring full access to packet pagdio fication techniques and to allow fair comparisons among them
poses concerns related to user privacy; (iii) they are ajfyic In the following sections, when presenting TIE's composent
unable to cope with traffic encryption and protocol obfuscand functionalities, we detail some of the design choices
tion techniques. For these reasons, the research commufagused on: multi-classification, comparison of approache
started investigating and proposing classification apgres and online traffic classification.
that consider other properties of traffic, typically adogti This paper is organized as follows. Sectidn Il illustratess t
statistical and machine-learning approaches [2] [3] [4lspite main architecture of TIE. In Sectidnllll aid]lV we give some
the large quantity of works published in the past few yeadefinitions, and explain its main functionalities. Sec{idle-
on traffic classification, aside from port-based classifffggh scribes two basic classification techniques we implemeased
and those based on payload inspection ([6] [7] [8]), thefEE plugins: port-based classification and payload inspact
are few implementations made available to the communitgrough pattern matching. SectiénlVI describes the involve
that target alternative approaches. NetAl [9] is a tool @ble ment of TIE in several international collaborative progect
extract a set of features both from live traffic and traffices Section[VIl ends the paper presenting future activities.

Il. ARCHITECTUREOVERVIEW the corresponding interval. An example usage is to build

TIE is written in C language and runs on Unix operating Ve traffic reporting graphs and web pages.
systems, currently supporting Linux and FreeBSD platforms All working modes can be applied to both live traffic and
The software is made of a single executable and a seriest/gffic traces. Obviouslyrealtime mode is the one imposing
plugins that are dynamically loaded at run time. A collectiomost constraints to the design of TIE's components. We
of utilities and scripts are distributed with the sourced are highlight that TIE was designed since the beginning target-

part of the TIE framework. ing online classification, and this affected several aspect
TIE is made of several components, each of them respdifscribed through the next section, of its architecture.
sible for a specific task. IV. TIE FUNCTIONALITIES

A. Packet Collection and Filtering
-_>-_>-_>-_>- As regards packet capture, TIE is based on the Libpcap
pd N, library [13], which is an open source C library offering an
..... - interface for capturing link-layer frames over a wide range
of system architectures. It defines a common standard format
for files in which captured frames are stored, also known as
. . . tepdumyp format, ade factostandard [13].

_Figurel1 shows the main blocks composing TIE. Faeket y154ern kernel-level frameworks for traffic capture on Unix
Filter is able to both capture live traffic or read from gnerating systems are mostly based on the BSD (or Berkeley)
traffic trace, and it can filter packets depending on sevegsl et Filter (BPF) [14], which allows to discard unwanted
criteria. P_acker are then _aggregated into separate S8SS|fckets specifying filtering rules. Libpcap, by supportthg
(as explained |n.the folllowmgz these can be flows, biflowgpp syntax, allows programmers to write applications that
etc.) by theSession Builderwhich keeps updated the statugansparently support a rich set of constructs to builditieta
of each session. A set of feature extraction routines (egyering expressions for most network protocols. Moreover
updating statistics on inter-packet times) are performgd Eibpcap allows to read packets from files figpdump format

the Feature Extractor The classification is performed DY aiher than from network interfaces without modifications t
the Decision Combinerwhich coordinates the activities Ofthe application’s code except for a different function cal

severa_l clgssificatio.n plugins (each one exchti_ng a eiffer jiialization time. This allows to easily write a single @p
classification technique). Th@utput generates final output catin which can work both in realtime and offline conditions
files with _modalltles and in da_lta formats _that depend on pq regards packet filtering, besides supporting the powerfu
the operating mode (explained in the following). In the Nepr fijters, which are called inside the capture driver, we
sections we describe in detail each component and relajgghiemented in TIE additional filtering functionalities vking

tasks. in user-space. Examples are: skipping the fits packets,
lIl. OPERATING MODES stopping the analysis after packets, selecting traffic within a

. i) specified time range, and checking for headers integrityd(TC
TIE supports operation on various kinds of data and difnecksum. valid fields etc.).

ferent operating modes. In this section we briefly introduce _
the three available operating modes. Their operation vell . Sessions
further defined in the next section. TIE decomposes network traffic into sessions, which are the
. Offline Mode: information regarding the classification ofobjects to be classified. In literature approaches thasifjas
a session is generated only when the session ends or atdifierent kinds of traffic objects have been presented:siflgs
end of TIE execution. This operating mode is typicallyng flows, TCP connections, hosts, etc. To make TIE support
used by researchers evaluating classification techniquélltiple approaches and techniques, we have defined the
when there are no timing constraints regarding clasgieneral concept of session, and specified different defivsti
fication output and the user is interested in obtainingf it (selected using command line switches):
information regarding the entire session lifetime. . flow: defined by the tuple{source;p, sourceyor,
« Realtime Mode information regarding the classification destinationrp, destinationpert, transport-level proto-
of a session is generated as soon as it is available. col} and an inactivity timeout, with a default value of

Fig. 1: TIE: main components involved in classification

This operating mode implemen@nline classification. 60 seconds.
The typical application is policy enforcement of classified « biflow: defined by the tuple{source;p, sourceyo,
traffic (QoS, Admission Control, Billing, Firewalling, destinationrp, destinationpert, transport-level proto-

etc.). Strict timing and memory constraints are assumed. col}, where source and destination can be swapped,
« Cyclic Mode: information regarding the classification is and the inactivity timeout is referred to packets in any

generated at regular intervals (e.g. edchminutes) and direction (default value is 60 seconds).

stored into separate output files. Each output file containse host a host session contains all packets it generates or

only data from the sessions that generated traffic during receives. A timeout can be optionally set.

When the transport protocol is TCP, biflows typically ap- Each session type is identified by a key of a fixed number
proximate TCP connections. However no checks on connexd-bits. For example, both keys of ttilew and biflow session
tion handshake or termination are made, nor packet retratges contain two IP addresses, two port numbers, and the
missions are considered. This very simple heuristic has bgaotocol type.
adopted on purpose, because it is computationally light andFigure[2 shows the simple hash function used for biflows.
therefore appropriate for online classification. This défin The function has been written so that source and destination
simply requires a lookup on a hash table for each packébsts’ IP addresses/ports can be swapped and still gertleeate
However, some approaches may require stricter rules to reame key.
ognize TCP connections, able to identify the start and end of
the connections with more accuracy. This may be the casg,* source ip =/

for example, of a classifier relying on features extracteenfr | ¢ = %) & %12 4% PO L
the first few packets (as TCP options, or packet sizes) [153]}
[16]. Moreover, explicitly detecting the expiration of @ PC |igr o = 50" 1= 22, 1es) ¢
connection avoids its segmentation in several biflows whenp =G = 13) + packetfi;
there are long periods of silence. This behavior is typical f
interactive applications like Telnet and SSH. [+ destip */ .
. . JSfor (i =16, k = 0; i = 20; i++) {

For these reasons, we implemented also additional heuris- k= (k * 13) + packet[];

tics, which can be optionally activated, to follow the stafe |}

:) /I d */
TCP connections by looking at TCP flags: for (ieit 2pzo;rti 1= 24; i+4) {
. . . . k = (k = 13) + packet]i];
o if the first packet of a TCP biflow does not contain a|;
SYN flag then it is skipped. This is especially useful to
filter out connections initiated before traffic capture was
started.

o The creation of a new biflow is forced if a TCP packet o
containing only a SYN flag is received (i.e. if a TCP For each session it is necessary to keep track of some

biflow with the same tuple was active then it is forced t§'formation and to update them whenever a new packet be-
expire and a new biflow is started). longing to the same session is processed (e.g. statusgeeeunt

A biflow is forced to expire if a FIN flag has beenféatures). Also, it is necessary to archive an expired sessi
detected in both directions. and to allocate a new structure for a new session. We therefor

« The inactivity timeout is disabled on TCP biflows (theyelssociate to each item stored in the hash table a linkedflist o
expire only if FIN flags are detected). sessions structures. That is, each element of the hash table

.] which represents a session key, contains a pointer to adinke
These heuristics have been chosen in order to trade-pdf of session structures, with the head associated to the

between computational complexity and accuracy, keeping é[]rrently active session.
mind TIE’s ability to_work inonline_mode. Some applications, In order to properly work with high volumes of traffic, TIE
however, may require a more faithful reconstruction of TCR 454 equipped with a Garbage Collector component that is
connections. For example payload inspection techniques Ugegnonsible of keeping clean the session table. At reguler-i
for security purposes, may require the correct reassenly, 05 it scans the table looking for expired sessions. If seagy
TCP streams in order to not be vulnerable to evasion teGhy, mps expired sessions data (including classificatisnlts)
niques [17]. For these tasks, a user-space TCP reassemialy $f, the output files and it then frees the memory associated
machine may be adopted and integrated into TIE, however this ihose sessions. Working in offine mode the Garbage
would significantly increase computational complexity. Collector is responsible of appending classification tsstd
Both biflow and host session types contain traffic flowingthe output file. In cyclic mode its work is synchronized with
in two opposite directions, which we calpstreamanddown- the dumping process made at regular intervals. Under melti

stream For both biflow and host session types, upstream agthde instead, it is only responsible to free memory of expire
downstream are defined by looking at the direction of thgssions.

first packet (upstream direction). Information regardimhg t .

two directions must be kept separate, for example to alldw Feature Extraction

extraction of features (e.g. IPT, packet count, etc.) eelat |n order to classify sessions, TIE has to collect the feature

to a single direction. Therefore, within each session witeeded by the specific classification plugins activated. For

bidirectional traffic, counters and state information algoa instance, a technique may need to access the payload of the

kept for each direction. first packet of a session in order to perform pattern matching
In order to keep track of sessions status according to tfiee Feature Extractor is the component in charge of collect-

above definitions we use a chained hash table data strutureéng classification features and it is triggered by the Sessio

which information regarding each session can be dynangicaBuilder for every incoming packet. To avoid unnecessary

stored. computations and memory occupation, most features can be

return ((+ k + L4_PROTO(packet)) % BIFLOW_TABLE_SIZE);

Fig. 2: TIE: hash function used to identify and store biflovgsens.

collected on-demand by specifying command line optionall the features needed are available (some features doiedna
This is particularly relevant when we want to perform onliney command line options). If some features are missing, then
classification. The calculation of features is indeed dcalit the plugin is disabled by calling th&sable() function. After
element affecting the computational load of a classifier. kEnabling a plugin, théoad_signatures() function is called in
[15] the computational complexity and memory overhead ofrder to load classification fingerprints. If the loading qess
some features in the context of online classification areédd encounters an error then the plugin disables itself.
evaluated. The Decision Combine(DC in the following) is responsible
We started implementing basic features used by most clésr the classification of sessions and it implements theesisa
sifiers, considering techniques of different categoriesit-p used for the combination of multiple classifiers. Whenever a
based, flow-based, payload inspection. We plan to enlaggje Hew packet associated to an unclassified session arrites, af
list of supported features by considering both new kinds apdating session status information and extracting featur
features and sets published in literature [18]. TIE calls the Decision Combiner. For each session, the De-
Classification features extracted from each session are kejgion Combiner must make four choices: if a classification
in the same session structure stored in the hash table psdyio attempt is to be made, when (and if) each classifier must be
described. In general, each session structure in the talpigoked (possibly multiple times), when the final classtiica
contains: (i) basic information (e.g. the session key, @isas decision is taken, how to combine the classification outputs
identifier, partial or final classification results, statuag8, from the classification plugins into the final decision. Tketa
etc.); (ii) timing information (e.g. timestamps of the Iagen these decisions and to coordinate the activity of multiple
packet for each direction); (iii) counters (e.g. number yies classifiers, the Decision Combiner operates on a set ofosessi
and packets for each direction, number of packets withofldigs and invokes, for each classification plugin, two fuortgi
payload, etc.); (iv) optional classification features (payload in the classifier structure:is_sessionclassifiable()and clas-
size and inter-packet time vectors, a payload stream fr@n tify session() The is_session_classi fiable() function asks a
first few packets, etc.). This structure can be easily exdgndclassifier if enough information is available for it to atfena
to collect additional features. Moreover the collectioreath classification of the current session. Ttassify_session()
on-demand feature is implemented as an inline function vhiéunction performs the actual classification attempt, mEhg
can be also enabled/disabled at compile time. the result in aclassoutput structure, shown in Figurld 4.

D. Classification
TIE provides a multi-decisional engine made of a Decision

typedef struct class_output {

u_intl6_t id; / * Application id */

Combiner and one or more Classification Plugins (or shortly

classifiers) implementing different classification tecuss.

u_int8_t subid;
u_int8_t confidence; /
u_int32_t flags;

/

* Application sub id
* Confidence value

«/
«/

} class_output;

Each classifier is a standalone dynamically loadable softwa
module. At runtime, aPlugin Manageris responsible of Fig. 4: TIE: the classutput structure stores the output of a classification
searching and loading classification plugins according toagempt.
configuration file callecnabled_plugins.

To highlight the central role of the DC, and how, thanks to
few functions and structures, it allows a flexible designtsf i

typedef struct classifier {

:2: E gf:ﬁf)) (())f operating strategy, in the following we illustrate some plm
int (*load_signatures) (char *); situations regarding the four main decision mentioned abov

int (*train) (char

*);

class_output (= classify_session) (void * session); « When to attempt classification The DC could decide to

int (*dump_statistics) (FILE *); | h . d di both inf
bool (*is_session_classifiable) (void * session); not _eva uate the Curre_nt sgssmn _Epen Ing 0':' Qn |n.or-
int (*session_sign) (void *session, void *packet); mation from the classification plugins or on a priori basis.

The latter may happen, for example, when the target of
classification is a restricted set of traffic categorieshin t
first case, instead, the DC typically asks each of the active
classification plugins if it is able to attempt classificatio
on the current session. Depending on the replies from
the classifiers the DC can decide to make a classification
attempt. For instance, the DC may wait for all classifiers
to be ready before making an attempt.

When each classifier must be invokedDepending on
the classifiers that are available, the DC could decide
to invoke only some of them, and only at some time,
for a certain session. For example, there could be clas-
sification techniques that are applicable only to TCP
biflows or some classifiers may be invoked only when

char *name;

char *version;

u_int32_t *flags;
} classifier;

Fig. 3: TIE: interface of classification plugins.

Classification plugins have a standard interface, shown
in Figure[3. To help plugin developers, @ummy plugin
with detailed internal documentation is distributed witfeT .
Moreover the other classification plugins distributed Wil
(e.g. the Port-based classifier) can serve as sample reéeren
code.

After loading a plugin, the Plugin Manager calls the corre-
spondingenable() function, which is in charge of verifying if

certain information is present. This is the case of payloath classifiers according to the order of their appearance in
based classifiers. In general, we can design combinatithe enabled_plugins file. If all the plugins agree on the
strategies with more complicate algorithms, in which theesult, or some of them classify the sessiorlsknown the
invocation of a specific classifier depends on several cotcembination is straightforward and the final confidence @alu
ditions and on the output of other classifiers. For examplis, computed as the sum of each confidence value divided
a payload inspection technique is launched on a session the number of enabled plugins. Instead, if one or more
only after that another classification plugin has suggestptligins disagree, the class is decided by the plugin with
it is Peer-to-Peer traffic. Or, if a session is recognizaughest priority. To take into account the conflicting résul
as carrying encrypted traffic by a classification plugirgf the classifiers, the confidence value is evaluated as dyefor
then the DC may start a specific classifier designed fand then divided by.

encrypted traffic. The algorithm chosing the sequenceAll the code implementing the decision combiner is in
of the classifiers to be invoked can be very simple @eparate source files that can be easily modified and extended
much more complex depending on the nature of thte write a new combination strategy. After future addition
classification problem and on the classification techniques further classification plugins, we plan to add combinatio
available. strategies that are more sophisticated.

o When the final classification decision is takenThis Finally, it is possible to run TIE with the purpose to train
choice is usually connected to the previous one. The Dfhie or more classification plugins implementing machine-
must decide when TIE has to assign a class to a sessi@arning techniques with data extracted from a traffic trace
This can happen at the arrival of any packet from th®o do this, we first need pre-classified data (ground truth).
considered session. Simple strategies are, e.g., wheriThgse can be obtained by running TIE on the same traffic
least one classifier has returned a result, or when all wace using a ground-truth classification plugin (e.g. the |
them have returned a classification result, etc. In mofiter classification plugin illustrated in Sectibn V-B). &lsame
complicate approaches, this choice can vary dependiogtput file generated by TIE is then used as pre-classifieal dat
on the features of the session (e.g. TCP, UDP, numberadd given as input to TIE configured to perform a training
packets, etc.) and the output of the classifiers. Moreovehase. For each activated classification plugin, two kinds o
if working in online mode, a limit on the time elapsedtraining functions can be invoked: the first one can be called
or the number of packets seen since the start of tkach time the status of a session changes, the second it calle
session is typically given. If such limit has been passedfter the entire traffic trace has been analyzed and allablail
a final classification result (even if labeled E@sknowr) features have been collected.
is assigned. o

« How to combine the classification outputs from the E- Data definitions and Output format
classification plugins into the final decision The DC One of the design goals of TIE, was to allow comparison of
receives aclassoutput structure (Figurd]4) from eachmultiple approaches. For this purpose a unified representat
of the classification plugins invoked. These must theof classification output is needed. More precisely we defined
be fusedinto a single final decision. Thelassoutput IDs for application classes (we simply call thepplication3
structure contains also a confidence value returned agd propose such IDs as a reference. Moreover, several ap-
each of the classifiers, which can be helpful when corproaches presented in literature classify sessions iatsses
bining conflicting results from different classifiers, and ithat are categories grouping applications that offer simil
determines the final confidence value returned by the D€ervices. We therefore added definitionsgadup classes and
The criteria used by each classification plugin to assignaasigned each application to a group. This allows to compare
value to the confidence value is defined by the designerclassification technique that classifies traffic into aggion
of the classification plugin and must be clearly reportedasses with another that classifies traffic into group elss
in the plugin documenation, unless it is always set tdloreover, it allows to perform a higher-level comparison
the maximum (default). Effectively combining conflictingbetween two classifiers that both use application classes, b
results from different classifiers is a crucial task. Theoking at differences only in terms of groups.
problem of combining classifiers actually represents a To build a valid application database inside TIE, we started
research area in the machine-learning figdd se Simple by analyzing those used by the CoralReef suite [5], and
static approaches are based on majority and/or priority the L7-filter project [7], because they represent the most
criteria, whereas more complex strategies can be adoptaunplete sets that are publicly available and because soth t
to take into account the nature of the classifiers and the@present the state of the art in the field of traffic analysis
per-class metrics like accuracy [19]. and classification tools. By comparing such to application

databases, we then decided to create a more complete one by

We distribute TIE with a basic combination strategy as iacluding information from both sources and trying to prese

first sample implementation. For each session, the decisiormost of the definitions in there.
taken only if all the classifiers that are enabled are ready toTo each application class, TIE associates the following
classify it. To take its decision the combiner assigns pirgs information:

o An application identifier that univocally identifies theThe output file is composed by a header and a body. The

application.

header contains details about the whole traffic results, the

« A human readable label to be used for readable outpuyplugins activated, and the options chosen. The body is a
o A group identifier that associates the application to eolumn-separated table whose fields contain the following

category.

session related information: an unique identifier, the et

Moreover, to introduce a further level of granularity, inthe start/end timestamps, the packets/bytes count for both
side each application class we allow the definition of subiPstream and downstream directions Awpl D, Subl D) pair
application identifiers in order to discriminate among &rss and a confidence value as resulting from classification jssce
of the same application generating traffic with differeropr The output format is unique but counters and timestamps
erties (e.g. signaling vs. data, or Skype voice vs. Skype, chgemantics depend on (i) the operating mode in which TIE
etc.). To each sub-application the following information iwas run and (i) the session type.

associated:
o A sub-application ID.

« A human readable label to be used for readable outp

« A long description.

Each application class has at least the default generic s
application ID “0". To obtain an easily manageable an
portable application database we adopted an ASCII file farm
Figure[® shows portions of thie_apps.txtfile. Each line de-
fines one application identified by the paitppI D, SubI D).
To properly define the application groups we started from the

In offline mode those fields refer to the entire session. In
realtime mode they refer only to the period between the start

u?f the session and the time the classification of the session

has been made. This is done in order to reduce computations
to the minimum after a session has been classified. Finally, i
%&Iic mode an output file with a different name is generated

r each time interval, and the above-mentioned fields refer
8nly to the current interval.

V. CLASSIFICATION PLUGINS

We distribute the first beta version of TIE along with two
basic classification plugins, implementing a port-basedsit

#AppID SublD GrouplD Label SubLabel Description) A X o i

o o o "UNKNOWN', "UNKNOWN', "Unknown application” fier and a deep payload inspection classifier. We implemented
L0 1 THTTPY, "HTTP", "World Wide Web" . them for first because they represent the state of art of more
1, 1, 1, HTTP", DAP", Download Accelerator Plus' .. e . .

L2 1 CHTTP, "FRESHDOWNLOAD' "Fresh Downioad" traditional approaches, therefore such classificatiorgiptu

1, 7, 1, HTTP", QUICKTIME", ‘Quicktime HTTP' . . .

L] e - . can be used for comparison and evaluation purposes. Asybriefl
10, 0, 3, FTP", FTP", File Transfer Protocol’ . . i R

o, 1 3 "FTP', 'FTP_DATA", “FTP daa stream" illustrated in Sectiof_VI, we are currently developing more
10, 2, 3 FTP", FTP_CONTROL", "FTP control . X) . .

L] L . . classification plugins, also through collaborations withen

4, 0, 1, HTTPS", "HTTPS", Secure Web A . N .

5 0 9 'DNS, 'DNS, "Domain Name Service" research groups, implementing techniques based on machine

learning and statistical approaches.

Fig. 5: TIE: definitions of application classes from the fieapps.txt
categories proposed by [20] and then we extended them '?‘)'y Port-based cIaSS|f|cat.|<.)n PIugm . _
looking at those proposed by CoralReef [5] and L7-filter [7]. The Port-based classification plugin relies on source and
The resulting database, as shown in Fidure 6, uses the s#lagtination port numbers as features. Several tools peirigr
format adopted for the applications database file and ammtaPort based classification were available. In our search the

a label and a description for each group.

Fig. 6: TIE: file format for definitions of group classes.

CoralReef suite [5], developed by CAIDA, was the one with
the largest and up-to-date port-based application dagabas

#GID Label Description To “not reinvent the wheel”, the classification plugin we
0, "UNKNOWN", "Unknown group" H H H

1 wes" AWorld wide webr |_mplemented from scratch relies on the CoralReef signature
2, "MAIL", "Mgil" file.

K s "l\'jllljic}gi?fg;r)plications" To import signatures from this file we implemented a simple
5, "CONFERENCING", "Conferencing and chat" parser that retrieves only needed information and stoliegoit

O AeASE. L tanase! (streaming) a hash table, in which the generic element has the structure
8, "VoIP", "Voice over IP" shown in figuréT’. Being that TIE determines the direction of a
T eRs e Iftee’r‘ae;fvese(j;;ii session differently compared to CoralReef (i.e. we comghue

11, "GAMES", "Games" source port the one from the host generating the first packet)
o spcerto-peer our parser swaps source and destination ports. Moreover,
14, "NETWORK_MANAGEMENT", "Network management" because TIE manages applications using an integer identifie
15, "NEWS", "News" i i i i

16 "FILE SYSTEM". *File. system" _the parser does the mapping of each application by looking at
17, "ENCRYPTION", “Encryption” its label.

18, "TUNNELING", Tunneling When a signature contains port ranges or more source-

destination combinations, the parser creates an entrydn th
hash table for each of them. This approach speeds up the

The main output file generated by TIE contains inforelassification process at the expense of few additionalsbyte
mation about the sessions processed and their classificatimf memory.

The algorithm implemented by the classifier on each session “ssh-[12]\.[0-9]

is very simple. It performs three lookups into the hash table i i
by specifying the following information combinations: matches the first characters of a SSH connection, where the

N initial “ssh* string is followed by the version number. As
« transport protocol and both source and destination ports :

T specified in the pattern it could bez or 2.z, wherex is a
« transport protocol and destination port only

digit from 0 to 9.
o transport protocol and source port only } o o
. . . L7-filter during its startup loads the application patterns
The lookup, if successful, will return the correspondmgr

o T e : om several text files with “pat” extension.
entry containing the application identifier. The confidence ,))
value is always set td00 when a hit occurs or set to After loading signatures, L7-filter processes packets by co
otherwise. lecting the payload of each session into an array, indepelyde
of its direction, and removing the null bytes. Removing null
B. L7-filter classification plugin bytes is necessary to pattern matching, because the regular
%xpression engine uses null-terminated strings. The rimatch

Another classification plugin distributed with TIE is base. rocess is triggered by the reception of a packet carryiyg pa

on a deep payload inspection technique. We chose fo i ad and if no match is found the session is left unclassiffed.

plement the same technique used by L7-filter [7] inside gio 10 packets the session can not be classified, thenlit wil

TIE classification plugin for the following reasons: (i) Wehe set adinknownand its subsequent packets are ignored.
wanted to support at least one payload-inspection teckniqu L .)
To develop a TIE classification plugin implementing the

to compare it against completely different approaches; (ii _ i
among the publicly available tools, L7-filter is one of the¢2M® technique used by L7-ilter (TIE-L7) we started from

most popular; (i) we needed to implement at least orfge latest code-repository checkout of the user-spaceovers
ground-truth technique in TIE, and L7-filter routines areeof :t was Eec_(taﬁs;r.y tol adapt;or;ne aspr)]e(étst of t:; ;I'IETlpl)Elatform
used in literature to build ground truth [21] [22]; (iv) the'© WOrK with thiS plugin. mrst, we had to add to an
current version of L7-filter is not easy to use on traffic tlsiaceOpt'O_n to make ;e_/eral classﬁ!cgtlon attempts for the same
Indeed, because of its nature, L7-filter natively works ay session, by modifying the Decision Combiner. Moreover, to

Linux platforms and can only analyze traffic from a networ!<et TIE work W'th the same def'”"!"’? of session, it was
interface. The only way to run it on previously-capturedfiza necessary to implement some heuristics to follow the state

is to replay that traffic (e.g. using tcpreplay [23]) on a nete of TCP connections. We analyzed the heuristics implemented
interface. Unfortunately such trick does not allow to wotk 4" the USer-space version of L7-filter, t'hat simply afssu'rm th

high traffic rates £ 1 Mbps), thus practically limiting its a packet carrying the FIN flag deterr_nmes the_exp|r_at|on of a
application to small traffic traces. By supporting the sam CP session, and added them as optional. During this study we

technique under TIE we do not have these limitations anymad 0 identified fgw btagsdln thle user—?vyl)ace version of tlh? ng.e
and we can run it both under Linux and FreeBSD. that we reported to the developers. Moreover, as explaimed |

L7-filter is an open-source project for Linux and it iSSectiorEIIB, we added more heuristics for TCP connections
available in two different versions: kernel and user—spactgat can be optionally activated.
The original project was born in kernel space, where many The pattern matching routines did not need any change to
functionalities are implemented by the Netfilter [24] framebe ported to TIE's classification plugin. However, in order t
work, the same used hiptablesto provide firewalling, NAT Support the FreeBSD operating system we included the GNU
(Network Address Translation) and packet mangling undBattern matching libraries into the plugin package, beedle
Linux. The user-space version, currently in a early stage igrplementation of such libraries under several versionthisf
development, gets data through Netfilter's queues and impRPerating system is extremely slow.
ments connection tracking from scratch. Furthermore, in order to integrate into TIE the pattern files
The L7-filter classification technique uses regular expresontaining signatures used by L7-filter, it was necessary to
sions. A regular expression (or regexp, or pattern) is g inle port the L7-filter parser into the plugin and to associateheac
the form of a text string, describing set of strings. In gaherapplication to the corresponding TIE identifiers. To sethsuc
a regexpr matches a string if s is in the set of strings association, at start-up, TIE-L7 loads the signaturesingad
described byr. the list from a configuration file, which also contains associ
For instance, the regex: ations between each application name and the corresponding
(AppID, SubID) pair.

Finally, to state the equivalence of TIE-L7 with the oridina

t def struct t_inf . .

TP e o™ L ource port (key) o) L7-filter (the user-space version) we added to both software
u_in;liGt_t dptO(t; ; * desttinatlion portk (key)) */ few routines to output debug information. Such output repor
i s R R i A the list of the sessions detected and the correspondingifelas
tu__ir;tié_t app_subid; / * application sub 1D */ cation result. We performed tests on several traffic traged,

} port info; after fixing problems related to small differences, we veifi

Fig. 7: TIE: element of the port information hash table. that TIE-L7 and L7-filter produced the same output.

VI. TIE AND THE RESEARCHCOMMUNITY VII. CONCLUSION

.) . . In this paper we introduced a novel community-oriented
TIE is a community-oriented tool, that has been designegare tool for traffic classification called TIE, suppogt

to allow the scientific community to easily develop reaje tair evaluation and comparison of different techniqaes
implementations of classification techniques to be evatliby fostering the sharing of common implementations and data.

anyone on real (apd live) traffic and. fglrly compared. HOW’e\’e]\/loreover, TIE is thought as a multi-classifier system and its
besides community needs and deficient aspects of the statg afiiecture is designed to allow online traffic classifimat

art, during the design of TIE and its development, we hav¥ge il allow the experimental study of a number of hot
constantly payed attention to what the scientific commum%piCS in traffic classification. such as:

had already produced, both in terms of functionalities aaua d . e . N
« multi-classification we are working on the combination

definitions/formats. Few examples follow: . .) .
P of multiple classification techniques with pluggable fu-

o TIE uses the Libpcap library for live traffic capture and sion strategies.

trace management, which isda factostandard supported
by most common operating systems. The vast majority
of the traces made publicly available by the scientific
community are in Libpcap (tcpdump) format, this makes
them immediately usable by TIE. o
TIE supports different definitions afessionsaccording

to those produced in literature.

In the definition of classes and class IDs, we have,
carefully considered definitions already used by the most
popular tools (e.g. CoralReef from CAIDA [5] and the
Linux project L7-filter [7]). Moreover we have created a
class hierarchy made of application groups, applications,,
and application sub-IDs, in order to represent the differen
types of classes considered in literature and to allow com-
parison even when they differ (e.g. approaches classifying
applications against approaches classifying categofies o
applications).

In the implementation of the first classification plugins we
adopted definitions and algorithms widely used and ac-
cepted, as the CoralReef file of rules for port-applicatior;
associations in the case of the Port-based classifier, and
L7-filter algorithm and signatures in the case of the TIE—[Z]
L7 classifier.

sharable datawe are implementing algorithms to pro-
duce pre-labeled and anonymized traffic traces, which
will allow the sharing of reference data for comparison
and evaluation purposes.

privacy. we are working on the design of lightweight
approaches to payload inspection that are privacy-friendl
and more suitable for online classification.

ground truth we are working on developing more accu-
rate approaches for the creation of ground-truth reference
data through the combination of multiple and novel
techniques.

performance analysisdisposing of multiple implemen-
tations of classification techniques on the same platform
allows to fairly compare different techniques the field

TIE will support the measurement of operating variable
such as classification time, computational load, as well
as memory footprint.

REFERENCES

Thomas Karagiannis, Andre Broido, Nevil Brownlee, KC fBfaand

Michalis Faloutsos. Is p2p dying or just hiding? IEEE Globecom
2004.

Thomas Karagiannis, Konstantina Papagiannaki, and diglfraloutsos.
Blinc: Multilevel traffic classification in the dark. IACM SIGCOMM

August 2005.

Furthermore, TIE was involved since its prototype stage |nt[3] Tom Auld, Andrew W. Moore, and Stephen F. Gull. Bayesiaural

collaborative projects with other research groups. Inipaler,
we cite: (i) an Italian research project, PRRECIPE specifi-

networks for internet traffic classificatiolEEE Transactions on Neural
Networks 18(1):223-239, January 2007.

Nigel Williams, Sebastian Zander, and Grenville Armitagk prelim-
inary performance comparison of five machine learning algmsttior
practical ip traffic flow classificationACM SIGCOMM CCR36(5):7—
15, October 2006.

. 4
cally focused on traffic classification and involving resars 4
from seven lItalian universities. (i) NETQOS, a European
Specific Targeted Research Project (STREP) from the 5th ca[lél Coelneet T - a— S

. . oralreel p://www.Calda.org/tools/measurement/coralieet/.

of IST FP6 framework, developing an autonomous pOIICy'[6] Vern Paxson. Bro: A system for detecting network intmsdi@ real-time.
based QoS management approach for heterogeneous networksn Computer Networkspages 2324, 1999.
in order to provide enhanced end-to-end QoS and efficiehf] L7-fiter, Application Layer Packet
resource utilization. TIE has been successfully used ia thi,, Lup/A7-Hiter.sourceforge.net.

) o . o) . y) 8] Cisco Systems. Blocking Peer-to-Peer File
project as an online traffic classifier interacting with @the ~ sharing Programs with the PIX Firewall
components of the NETQOS framework. (iii) TIE has been | http://WWW-CiSCO-Eom/apF#icatiOrt\)/pdfépaws/42l700/bdm2m;iX-DCfif-

. . : netAl: Networ Traffic ase Application Identification
recogmz“ed as refgrence.tocl)l in the European COST Actiohl htp://caia. swin.edu au/urp/dstc/neta.
ICO0703 “Data Traffic Monitoring and Analysis (TMA): theory,[10] Tstat [http:/tstat.tic.polito.|t [November 2008].
techniques, tools and applications for the future network§gl1] Dario Bonfiglio, Marco Mellia, Michela Meo, Dario Rossand Paolo
(shortly COST—TMA) [27] regarding all joint activities on Tofanelli. Revealing skype traffic: when randomness play wou. In
traffic classification.
Finally, Table[l summarizes TIE classification plugins that

SIGCOMM '07: Proceedings of the 2007 conference on Apptioat
technologies, architectures, and protocols for computnmunications
) - o)
are both available or under development and highlights con-
nections with the research community.

Classifier for Linux

pages 37-48, New York, NY, USA, 2007. ACM.

Luca Salgarelli, Francesco Gringoli, and Thomas Karagis. Compar-
ing traffic classifiersSIGCOMM Comput. Commun. Re®7(3):65-68,
2007.

http://www.caida.org/tools/measurement/coralreef/
http://l7-filter.sourceforge.net
http://www.cisco.com/application/pdf/paws/42700/block_p2p_pix.pdf
http://caia.swin.edu.au/urp/dstc/netai
http://tstat.tlc.polito.it

TABLE I: TIE classification plugins available and under deyenent. The table highlights input from the community and fj@iativities.

[Classification Plugin | Features based on [Classification approach] Status [Collaborations and contributions from the community |
Port Protocol ports Port-based Available Developed by UNINA, signatures from CAIDA [5]
L7 Payload Deep payload inspeci Available Developed by UNINA, code and signatures from Linux L7-filt
tion [7]
NBC Payload Lightweight Payload| To be released| Developed by UNINA
Inspection
GMM-PS First few packet sizes Gaussian Mixture Mod-| Under test Developed by UNINA
els [16]
HMM Packet size and inter-packet time | Hidden Markov Models| Under devel. Development by UNINA
[25]
FPT Packet size and inter-packet time | Statistical [21] Under devel. Joint work between UNINA and University of Brescia in th
context of the RECIPE research project [26]
Joint Packet size and inter-packet time | Nearest Neighbour Under devel. Joint work: UNINA, CAIDA, Seoul National University
GT Information from Hosts Ground-Truth In early devel. | Joint work: University of Brescia, CAIDA, UNINA
[13] Tcpdump and the Libpcap libranhttp://www.tcpdump.org [November

[14]

[15]

[16]

[17]

[18]

[29]
[20]

[21]

[22]
[23]
[24]
[25]
[26]

[27]

2008].

V. Jacobson S. McCanne. The bsd packet filter: A new tchire
for userlevel packet capturévinter 1993 USENIX Conferencpages
259-269, January 1993.

Wei Li and Andrew W. Moore. A machine learning approachdfiicient
traffic classification. IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and Telecommunicea®igstems
(MASCOTS)October 2007.

Laurent Bernaille, Renata Teixeira, and Kave Salamattaarly appli-
cation identification. IPACM CoNEXT December 2006.

Thomas H. Ptacek, Timothy N. Newsham, and Homer J. Simpson.
Insertion, evasion, and denial of service: Eluding networkusion
detection. Technical report, 1998.

Andrew Moore, Denis Zuev, and Michael Crogan. Discriatars for use
in flow-based classification. Technical Report RR-05-13yd@tment of
Computer Science, Queen Mary, University of London, 2005.
Ludmila I. Kuncheva. Combining Pattern Classifiers: Methods and
Algorithms Wiley-Interscience, 2004.

Andrew Moore and Konstantina Papagiannaki. Toward dbeurate
identification of network applications. IRAM, April 2005.

Manuel Crotti, Maurizio Dusi, Francesco Gringoli, abhdca Salgarelli.
Traffic classification through simple statistical fingerping. ACM
SIGCOMM CCR 37(1):7-16, January 2007.

Zhu Li, Ruixi Yuan, and Xiaohong Guan. Accurate classifion of the
internet traffic based on the svm method.IGC, June 2007.
Tcpreplay |http://tcpreplay.sourceforge.net [November 2008].
Netfilter/IPTables http://www.netfilter.org [November 2008].

A. Pescap P. Salvo Rossi A. Dainotti, W. de Donato. Classification
of network traffic via packet-level hidden markov models. IEEE
GLOBECOM 2008December 2008.

RECIPE (Robust and Efficient traffic Classification in IP né&iths).
http://recipe.dis.uninalit.

COST Action 1C0703: Data Traffic Monitoring and Analysis (&AM
theory, techniques, tools and applications for the futuetworks
http://www.cost-tma.€eu.

=

http://www.tcpdump.org
http://tcpreplay.sourceforge.net
http://www.netfilter.org
http://recipe.dis.unina.it
http://www.cost-tma.eu

