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The QED Lagrangian

The Lagrangian for a charged, spin—% relativistic particle is
- 1
L=V(iv"D, - 1)V — Tom —Fu F*

here i = ¢ = m =1 and we use the four-vector notations (1 =0, 1,2, 3)
xt = (ct,x) € R*, with metric tensor g, = diag{1,—1 — 1, —1} used to
lower or raise the Lorentz indices,

is the Dirac spinor and ¥ = W40 is the Dirac adjoint ;
are the 4 x 4 Dirac matrices ;
= 0, +ie(Au + ASY) is the gauge covariant derivative ;
is the charge (coupling constant);

is the electromagnetic 4-vector potential generated by the
electron itself ;

= 0,A, — 0,A, is the electromagnetic tensor field ;

is the external electromagnetic potential.



The Euler-Lagrange equations: Maxwell-Dirac system

The Euler-Lagrange equations in the Lorenz gauge: 0,,A"* = 0 are
given by the following Maxwell-Dirac system

(iv"0, — 1)V = ey"(A, + ATV
OA* = 47 jH
where is the conserved = Oyt =0.

e External source: (not relativistic) nucleus of atomic number Z

z
At = |LT’; APt =0 (k=1,2,3)

e Ground state: We look for a bound state of lowest positive
energy, a stationary solution

W(t,x) = e Fhip(x); with

and > 0.



The Maxwell-Dirac eigenvalue problem

We are lead to consider the following eigenvalue problem

(—ia V +B)Y — 24 + eAopp — e - Aty = £4)
—AAg = 4re |¢Y|?
—AA = 4me (v, ab)cs

here B =1°, a = ~°(y%,72,+3) are hermitian, unitary matrices,

Ao = ey *
A= e, o) * -



The nonlinear eigenvalue problem

The problem reduces to the nonlinear eigenvalue problem:

P {(HD - Vexe o+ Vine (W0 = E4)

here Hp = —iax - V + 3 is the is the (free) Dirac operator,
Vext = —%6‘2114 is the Coulomb potential, and

20,12 1

Vint(w) =€ |¢| * ﬁl‘l — € o (l/)aa?/))@ * W

is the nonlinear term, note that |(, a))cs|(x) < [¥2(x) -



The free Dirac operator

The (free) Dirac operator is a first order,
self-adjoint operator on H'(IR3; C*) with purely absolutely
continuous spectrum given by o(Hp) = (—oo0, —1] U [1, 4+00).
In Hp becomes a multiplication operator with

eigenvalues {£+/|p|? + 1}.

Let A+ the two infinite rank orthogonal projectors on the
positive/negative energies subspaces, then

HpAs = ApHp = + Ay = +As

For any 1, ¢ € HY/2(R3; C*) the Dirac- operator form is given by

(V[Hp@) = (Atb, Nid) e — (N9, A@)
and we denote Xy = ALHY2(R3; C*).



Some useful estimates:

For all ¢» € HY/2(R3; C*)

2
> fRa [ Ix < %|(_A)1/4¢’ > 2||¢||H1/2 [Kato]

T @

A2 .
» f]R3| =V gy < |]Ai¢\|f_ﬂ/2 [Tix]

Ix]

with 7, =3(3 + 2) < I, and Ze?y, < 1 for Z < 124.

™



Theorem. (Coti Zelati - N. ; SIMA (2019))

For any 4 < Z < 124, there exist and
€ HY2(R3; C*) a (weak) solution of

(P) {(HD + Ve.xt)iﬂ + th(¢)¢ = lb

The critical value of the energy functional

£() = (61(Ho + Vewe)) + 5 (0] Vie ()0
is and it is given by

A= inf sup  E(Y) = E(vo).
d_FC;(il YEFDX_

where X+ = AL HY?(R3; C*) are the positive/negative (free)
energies subspaces, and L is the



Related results

» Minimax characterization for the positive eigenvalues in the spectral
gap for the Dirac-Coulomb operator Hp + Viy:

[Dolbeaut-Esteban-Sere Calc.Var. PDE (2000); Morozov-Muller Math.Z. (2015) ; .....]

A = inf sup  (|(Hp + Vext)¥) keN
FCXy  yeFox_
dimF=k |1/)|L2=1

— and 0 < A\ << A —>1

> Existence for Maxwell-Dirac system Hpt) + Vipe(1)) = Evp

[Esteban-Georgiev-Sere Calc.Var. PDE (1996) , Abenda Ann.IHP (1998)]



The variational problem

We look for solutions of the nonlinear eigenvalue problem (P) as
the critical points of the

X
) =N e — N30 — 262 [ 20 g0

]

e Pe(X)py(y) = Jp(x) - Jp(y)
"2 //RR x—y] dx dy

where py, = [¢|? and Jy = (¢, a))c4, constrained to the set
Y = {¢p € HY2(R3;C*) b
The (nonlinear) eigenvalue £ is the
(P) < dE@W)[h =2ERe(|h)2  Yhe HY2(R3CY)

e Positive eigenvalues: =



Some useful estimates
» since |Jy(y)| < pu(y) for any y € R3, for any ¥, ¢ € HY/?(R3; C*)

// Pe()Po(2) = July) - Jo(2) 4 <
R3xR3 ly — 2] o

> since J,, € LY(R3)3 N L3/2(R3)3 for any v € HY/?(R3; C*)

. N 2
J[ 2@ L REE .,
R3xR3 ly — 2| ™ Jrs Pl

» Estimates on commutators:
Let y € C(R?) and x,(y) = x(R~1y) then

1D ALl o yne = O(RTY)as R — o0,

~>H1/2



Idea of the proof

Define the min-max

A= inf  sup EW
weX | sz(W) ( )

where
Yo={weX,  w)kh =1}
Y(w)={¢ €T : Y] vy = w}
={Y=alv )w+y_; Y- e X},

and a(1 ) — \/1 w1, with ¢y = Ay € Xq



To prove that A is a critical value we show that for any w € > |

there exists, , ¥ =1(w) € E(w) such that
E(Pp(w)) = sup &(Y)
Ppexr(w)
and that £(y(w)) depends on w.

Then we proceed with the minimization

A= inf E(Y(w)).
wEeY |
Remark that the is required since the gradient flow is
nonlinear and hence deformations do not preserve the linear
subspaces structure.



Maximization problem

Proposition.
For any w € ¥ there exists, unique, ¥ = p(w) € X(w):

> E(h(w)) = supyex(w) E(¥) = (1 — Ze*y7) > 0,
» the map w — E((w)) is smooth;
» For any h € span{w} & X_
dE(p(w))[h] = (¢ (w)) 2Re(ip(w), h) 2 = 0

where (1(1)(w)) > 0 is the Lagrange multiplier.



Remark: If 4 is a critical point for £ on (w), then

—

Lemma.
Let ={YeX(w): } we have

> 5|Z(W) satisfies the Palais Smale condition on

IV EWn)ll = 0, E(Yn) bdd = 14 is precompact in By .
> If 1 is a critical point for 5|Z(W) in
d?E(W)[h; h] = 2u(y)|h[72 < —6|lhll}se  VhE TyE(w)

e All critical points of E‘Z(W) in are strict local maxima.



Sketch of the proof: Existence
> if {¢n} is a maximizing (PS)-sequence for & = then

, definitely.
> 5|z(w) satisfies the Palais Smale condition on
» By Ekeland'’s variational principle there exists a maximizing

(PS)-sequence {¢n} for £ . Then and hence
{1n} converge to a maximizer ¢ €



Sketch of the proof: Uniqueness

Suppose we have two maximizer 11 # 1, clearly 11,1, €
Since

> is invariant for the gradient flow of5|z(w)

then the set

r={~:10,1] — | 7(0) = 41, (1) = tp2 } # O is invariant.
We can then apply the Mountain Pass theorem and since the
holds in there exists at the min-max level

¢ =sup min E(v(t
sup min £(7(1)

a critical point of MP-type. We reach a contradiction since

> all critical points of 5|Z(W) in are strict local maxima.



Sketch of the proof: Smoothness

To prove that w — E(¢(w)) is smooth we use the Implicit
function theorem. Let F: ¥ x X_ — H™1/2

Flw,¢-) = dE()[-] = p(¥) 2Re(), - )12
with ¢ = a(¢_)w + _.
> F(W,w_(w))hwz(w) =0 if ¢ € X(w) is the maximizer.
» the quadratic form Q : TyX(w) x Ty,X(w) — R given by

Q(h7 k) = _<d¢— F(Waw—(w))[h”k>
= —(d?E((w))[h, k] — p(v(w)) 2Re(h, k) 2)

is coercive, hence dy_F(w,_(w)) is invertible.
» by IFT and uniqueness, the map w — ¢_(w) is smooth.



Minimization problem

A= WIG”%: ¢:;?W)g(w) N Wlen;+ 5(¢(W))

Proposition.
There exists wy € X such that 1o = 1¥(wy) satisfies

> A= E(tho) = infues, E(Y(w))
> o — (o) € B\ o(Hp) satisfies

{dE(wo)[h] = 2F, Re(tg, h) 2 Vh e HY2(R3; C*)

‘('O‘L: = 1



Sketch of the proof

» By the Ekeland'’s variational principle there exists a
{wn} C X4

Hence v, = ¥(w,) — o (weakly), u(vn) — 1o and
d&(o)[A] — /10 2Re(tho | h)2 =0, Yhe HY?
e But we do not know if (not even if ¥y # 0).

Remark.

Since the potential term of the energy functional is weakly
continuous, we get strong convergence if the (nonlinear) eigenvalue
(here the Lagrange multiplier /10) is in of Hp
(exactly as in the linear case Hp + Viext).



Lemma.
If Z > 4 then

» By the smooth variational principle of Borwein-Preiss there
exists a {wn} C X, that satisfies

Ay € (Y (Wn)) [, hn] — 2a7 | hn|{2 > o0n(1)
for all h, € Ty, X4, with ¥, = (w,) and a, = |ALa2 -
> for any € > 0 there exists h(s) € Ty, x4 such that

AR )2
ffR3>< WSIR [hn |||(y)+05( )+On(1)

and we derive

d2E(n)[hS), )] — 222| W12, < C(4 — Z)e + 0 (e) + 0a(1).



e Work in progress: The Maxwell-Dirac-Fock equations.
Hartree-Fock : E.H.Lieb, B.Simon CMP (1977); P.L.Lions CMP (1987)
Dirac-Fock : M.J. Esteban, E. Séré CMP (1999)
e N - relativistic electrons represented by a Slater determinant
of ¢; (j =1,...,N) such that
Interactions:

2
» nucleus - electron : V:(x) = —|Z7e|

> between electrons : the electromagnetic potential A,g) is
generated by the static Dirac-current of the N-electrons wave

function.

—AAg) = 4me py
—AAY) = 4re Jy,

where py = ZLVZI [k|? and Sy = Zzlzl(wk,gwk)@.



The nonlinear eigenvalue problem

We have a nonlinear, system of equations

(P) (HD + Vext)’(vbj + Vlnt(\U)wJ = 17[)1
S k=1,....,N

where . .
Vine(V) = e’py * ﬂh —e’a- Jyx —
X

x|

By the U(N)-invariance, the system (P) is equivalent to

(Hp + Vext)¥j + Vine (W)t = SN 112)e
jok=1,...,N

for any , M = M* with eigenvalues



The variational problem

Setting Wt = (¢1,...,9n) € HY?(R3,C*N) and
Gram 2V = {(ty, j) 2 }jk we look for (W, M) solutions of

{dE(\U)[h] = Tr(M d(Gram2W)[h])  Vh € HY2(R3,C4N)

where is the matrix of and

py(x)
S0 =V e = - B~ 26 [ 20 o

[x]

€2 pu(X)pw(y) — Ju(x) - Ju(y)

with ”‘Ui”ip/z = ZQ’:l H/\iwkHi’m, constrained to the set
> ¥ = {W e HY2(R3C*) }.

Note that £(V) and X are invariant by the U(N)- action.



e Positive eigenvalues:

Lemma.
If V is a critical point for £ on X, then

M=MWV)>0 < I1-2Gram2¥_ >0

2 1

e(N=1)A>0=F >0and £ >0 <= A ]}, < 5.

= A= inf sup & = inf sup &
|W|€X+1 wEZFW) (w) wEX 4 1/168? 2 (w)
wl 2=

where

Yo={weX; : |wi =1}
S(w)={veX : Yl vy =w}
Bio={$eX(w): A 0} < 3}



o Min-max:
For any N € N, we define

Ay = inf sup E(V
N w62+wep (V)

where

Z+:{W€X£l ’ GramLQW:]I}
T(w)={Vex|(Gramp W) Y2V, = Uw; Uc UN)}
={VeX(w): }
Note that >, ¥(w), By, are invariant by the U(N)- action.

> 5|z(w) satisfies the Palais Smale condition on



Proposition. (Maximization problem)
For any w € X there exists V(w) € By »:

> E(V(w)) =supyes, , E(V) > (1 = Zagyr) > 0;
» Forany he (W @ X_)N, where W = span{wi,--- ,w,}

dEW(W))[A] — Tr(M(V(w))d(GramW)[h]) = 0

and the Lagrange multipliers matrix M (W (w)) is positive
definite.

> In progress: If W is a critical point for E|Z(W) in B, - then
d?E(V)[h; h] — 2Tr(M(W)Gram 2h) < —6]| 12,2

for any h € TyX(w).

» Open question: Unigueness for the maximizer W(w) and the
smoothness of w — E((w)).



Proposition. (Minimization problem )
e Suppose that the map w — E(YP(w)) is then

A= inf  sup &)= inf E(Y(w))

wEY YeX(w) WEY
There exists wyg € ¥ such that Wo = W(wy) satisfies
> )\ = 5(“’0) = ian€z+ g(¢(W))
> and ,

=

and
{dé’(\llo)[h] = Tr( dGramy2Wo[h])

for any h € HY/2(R3; C*N).



Thanks for the attention!



