next up previous contents
Next: 1.3.5.2 Energy balance equation Up: 1.3.5 Properties of magnetization Previous: 1.3.5 Properties of magnetization   Contents

1.3.5.1 Magnetization magnitude conservation

Let us now briefly recall the fundamental properties of Landau-Lifshitz-Gilbert (LLG) dynamics. By scalar multiplying both sides of the LLG equation (1.95) by $ \textbf{{m}}$ one can easily obtain:

$\displaystyle \frac{d}{dt}\left(\frac{1}{2} \vert\textbf{{m}}\vert^2 \right) = 0 \quad,$ (1.96)

which implies that, for any $ t_0,t$ and $ \textbf{r}\in \Omega$, it happens that:

$\displaystyle \vert\textbf{{m}}(t,\textbf{r})\vert= \vert\textbf{{m}}(t_0,\textbf{r})\vert \quad .$ (1.97)

Thus, any magnetization motion, at a given location $ \textbf{r}$, will occur on the unit sphere.

Massimiliano d'Aquino 2005-11-26