next up previous contents
Next: 4.6 Accuracy tests for Up: 4. Geometric integration of Previous: 4.4.1.3 Preservation of Hamiltonian   Contents

4.5 Solution of the time-stepping equation

The properties we have just discussed are strongly related to the implicit nature of mid-point rule. As consequence of this implicit nature, we have to solve the time-stepping Eq. (4.33) for the unknown $ \underline{\textbf{m}}^{n+1}$ at each time step which amounts to solve the following system of $ 3N$ nonlinear equations in the $ 3N$ unknowns $ \underline{\textbf{m}}^{n+1}$:

$\displaystyle \mathbf{F}(\underline{\textbf{m}}^{n+1})=\mathbf{0}\quad,$ (4.43)

where $ \mathbf{F}(\underline{{\textbf{y}}}):\mathbb{R}^{3N}\rightarrow \mathbb{R}^{3N}$ is the following vector function:

$\displaystyle \mathbf{F}(\underline{{\textbf{y}}})=\left[{\underline{\textrm{I}...
...}\left(\frac{\underline{{\textbf{y}}}+\underline{\textbf{m}}^{n}}{2}\right)  ,$ (4.44)

and where

$\displaystyle \mathbf{f}(\underline{\textbf{m}})=-{\underline{\Lambda}}(\underline{\textbf{m}}) \cdot \underline{\textbf{h}}_$eff$\displaystyle (\underline{\textbf{m}})= {\underline{\Lambda}}(\underline{\textb...
...t
 \frac{\partial \underline{{\text{g}}}}{\partial \underline{\textbf{m}}}   ,$ (4.45)

is the right-hand-side of the conservative LLG equation. It is interesting to notice that the damping is present in only one term in the function $ \mathbf{F}(\underline{{\textbf{y}}})$ and it introduce only a slight modification of the function. The solution of the system of equation (4.43) can be obtained by using Newton-Raphson (NR) algorithm. To this end, we derive the jacobian matrix $ {\underline{\textrm{J}}}_$F$ (\underline{{\textbf{y}}})$ of the vector function $ \mathbf{F}(\underline{{\textbf{y}}})$ which, after simple algebraic manipulations, can be written in the following form

$\displaystyle {\underline{\textrm{J}}}_$F$\displaystyle (\underline{{\textbf{y}}})={\underline{\textrm{I}}}-\alpha{\under...
...(\underline{\textbf{m}}^{n})- \frac{\Delta t}{2}
   {\underline{\textrm{J}}}_$f$\displaystyle \left(\frac{\underline{{\textbf{y}}}+\underline{\textbf{m}}^{n}}{2}\right)$ (4.46)

where $ {\underline{\textrm{J}}}_$f is the jacobian matrix associated to $ \mathbf{f}(\underline{\textbf{m}})$. By using the Eqs.(4.25), (4.45), one obtains:

$\displaystyle {\underline{\textrm{J}}}_$f$\displaystyle (\underline{\textbf{m}})=\frac{\partial \mathbf{f}}{\partial \und...
...ne{\textrm{C}}}\cdot\underline{\textbf{m}}+\underline{\textbf{h}}_a\right)   .$ (4.47)

The main difficulty in applying NR method is that the Jacobian $ {\underline{\textrm{J}}}_$F$ (\underline{{\textbf{y}}})$ of $ \mathbf{F}(\underline{{\textbf{y}}})$ is a full matrix, due to the long-range character of magnetostatic interactions which reflects in the full nature of the matrix $ {\underline{\textrm{C}}}$. In this connection, let us observe that the damping term affect only a small sparse component of the jacobian $ {\underline{\textrm{J}}}_$F$ (\underline{{\textbf{y}}})$ and thus does not introduce any basic difficulty. Anyhow, due to the full nature of $ {\underline{\textrm{J}}}_$F$ (\underline{{\textbf{y}}})$, the use of the plain NR method would require an unpractical computational cost. However, as it is usual in solving field problems with implicit time stepping, we can use a quasi-Newton method by considering a reasonable approximation of the Jacobian. In order to have a sparse Jacobian one can consider the following expression $ {\underline{\tilde{\textrm{J}}}}_$F in which magnetostatic interactions are not included:

$\displaystyle {\underline{\tilde{\textrm{J}}}}_$F$\displaystyle (\underline{{\textbf{y}}})={\underline{\textrm{I}}}-\alpha{\under...
...ine{\textbf{m}}^{n})- \frac{\Delta t}{2}
   {\underline{\tilde{\textrm{J}}}}_$f$\displaystyle \left(\frac{\underline{{\textbf{y}}}+\underline{\textbf{m}}^{n}}{2}\right) \quad,$ (4.48)

where the matrix $ {\underline{\tilde{\textrm{J}}}}_$f is

$\displaystyle {\underline{\tilde{\textrm{J}}}}_$f$\displaystyle (\underline{\textbf{m}})=-{\underline{\Lambda}}(\underline{\textbf{m}})\cdot
 (-({\underline{\textrm{C}}}_$ex$\displaystyle +{\underline{\textrm{C}}}_$an$\displaystyle ))+{\underline{\Gamma}}\cdot
 \left[-({\underline{\textrm{C}}}_\t...
...}}_\text{an})\cdot\underline{\textbf{m}}+\underline{\textbf{h}}_a\right] \quad.$ (4.49)

Basically, the latter equation is obtained by substituting the full matrix $ {\underline{\textrm{C}}}$ with its sparse component $ {\underline{\textrm{C}}}_$ex$ +{\underline{\textrm{C}}}_$an in Eq. (4.47). Thus, the iterative procedure can be summarized as follows:

$\displaystyle \underline{{\textbf{y}}}_0=\underline{\textbf{m}}^n  ,     
...
...xtbf{y}}}_{k+1}=\underline{{\textbf{y}}}_k+\Delta\underline{{\textbf{y}}}_{k+1}$   with$\displaystyle \quad
 {\underline{\tilde{\textrm{J}}}}_$F$\displaystyle (\underline{{\textbf{y}}}_k)\Delta\underline{{\textbf{y}}}_{k+1}=-\mathbf{F}(\underline{{\textbf{y}}}_k)   .$ (4.50)

At each iteration, the linear system defined by the matrix (4.49) has to be inverted. Since this matrix is non-symmetric, we have found appropriate to use generalized minimum residual (GMRES) method [91]. The iteration (4.50) is repeated until the norm $ \Vert\mathbf{F}(\underline{{\textbf{y}}}_k)\Vert$ is under a prescribed tolerance. The iterative technique we developed to solve Eq. (4.43) belongs to the main category of quasi-Newton methods. In this respect, it has been proven [92] that this kind of iterative procedure is convergent and the order of convergency is the first order, provided that the initial guess is sufficiently close to the `true' solution of the system.
next up previous contents
Next: 4.6 Accuracy tests for Up: 4. Geometric integration of Previous: 4.4.1.3 Preservation of Hamiltonian   Contents
Massimiliano d'Aquino 2005-11-26