Publications
Journal papers
Baldassarre, A., D'Ambrosio, A., & Conversano C. (2024). Explaining central government’s tax revenue categories through the Bradley-Terry Regression Trunk model.
Statistics and Public Policy, Accepted manuscript.
Pandolfo, G., & D'Ambrosio, A. (2023). Clustering directional data through depth functions. Computational Statistics, 38, pp. 1487-1506, https://doi.org/10.1007/s00180-022-01281-w .
Baldassarre, A., Dusseldorp, E., D'Ambrosio, A., de Rooij, M., & Conversano, C. (2023). The Bradley-Terry Regression Trunk
approach for modelling preference data with small trees. Psychometrika, 88, pp. 1443-1465, https://doi.org/10.1007/s11336-022-09882-6 .
Iorio, C., Frasso, G., D'Ambrosio, A., & Siciliano, R. (2023). Boosted-oriented probabilistic smoothing-spline clustering of series.
Statistical Methods and Applications, 32, pp. 1123–1140, https://doi.org/10.1007/s10260-022-00665-y .
D'Ambrosio, A., Vera J.F. & Heiser, W.J. (2022). Avoiding degeneracies in ordinal Unfolding using
Kemeny-equivalent dissimilarities for two-way two-mode preference rank data. Multivariate Behavioral Research, vol. 57(4), p. 679-699,
https://doi.org/10.1080/00273171.2021.1899892.
Pandolfo, G. & D'Ambrosio, A. (2021). Depth-based classification of directional data. Expert Systems with Applications,
vol. 169, 114433, https://doi.org/10.1016/j.eswa.2020.114433 .
Cannavacciuolo, L., Ponsiglione, C. & D'Ambrosio, A. (2021). How to improve the Triage: A dashboard to assess the quality of nurses' decision-making.
International Journal of Engineering Business Management, https://doi.org/10.1177/18479790211065558.
D'Ambrosio, A., Amodio, S., Iorio, C., Pandolfo, G. & Siciliano, R. (2021). Adjusted concordance index: an extension of the adjusted Rand index to fuzzy
partitions. Journal of Classification, vol. 38, p. 112-128, https://doi.org/10.1007/s00357-020-09367-0.
Pandolfo, G., D'Ambrosio, A., Cannavacciuolo, L. & Siciliano, R. (2020). Logic AGgregation of Crisp Data Partitions as Learning Analytics
in Triage Decisions. Expert Systems with Applications. https://doi.org/10.1016/j.eswa.2020.113512.
Iorio, C., Pandolfo, G., Frasso, G. & D'Ambrosio, A. (2020). A combined clustering and multi-criteria approach for portfolio selection.
Statistica & Applicazioni. DOI: 10.26350/999999_000018.
Pandolfo, G., Iorio, C., Siciliano, R. & D'Ambrosio, A. (2019). Robust mean-variance portfolio through the weighted Lp depth function.
Annals of Operations Research, https://doi.org/10.1007/s10479-019-03474-x
Iorio, C., Pandolfo, G., D'Ambrosio, A. & Siciliano, R. (2019). Mining big data in tourism.
Quality & Quantity, https://doi.org/10.1007/s11135-019-00927-0
Scandurra, A., Alterisio, A., Di Cosmo, A., D’Ambrosio, A. & D’Aniello, B. (2019). Ovariectomy impairs socio-cognitive functions in dogs.
Animals, 9(2), 58, pp. 1-7.
Iorio, C., Aria, M., D'Ambrosio, A. & Siciliano, R. (2019). Informative Trees by Visual Pruning.
Expert Systems with Applications, vol. 127, pp. 228-240, https://doi.org/10.1016/j.eswa.2019.03.018
D'Ambrosio, A., Iorio, C., Staiano, M. & Siciliano, R. (2019). Median constrained bucket order rank aggregation.
Computational Statitstics, vol. 34(2), pp. 787–802, https://doi.org/10.1007/s00180-018-0858-z
D'Ambrosio, A. & Heiser, W.J. (2019). A Distribution-free Soft Clustering Method for Preference Rankings.
Behaviormetrika , vol. 46(2), pp. 333–351, DOI: 10.1007/s41237-018-0069-5
Morrone, A., Piscitelli, A. & D'Ambrosio, A. (2019). How Disadvantages Shape Life Satisfaction: an Alternative Methodological Approach.
Social Indicator Research, vol. 141(1), pp. 477-502, https://doi.org/10.1007/s11205-017-1825-8
Pandolfo, G., D'Ambrosio, A. & Porzio, G. (2018). A note on depth-based classification of circular data.
Electronic Journal of Applied Statistical Analysis, vol. 11(2), pp. 447-462, DOI: 10.1285/i20705948v11n2p447
Aria, M., D'Ambrosio, A., Iorio, C., Siciliano, R. & Cozza, V. (2018). Dynamic recursive tree-based partitioning for malignant melanoma identification in skin lesion dermoscopic images.
Statistical papers , DOI: 10.1007/s00362-018-0997-x
Iorio, C., Frasso, G., D'Ambrosio, A. & Siciliano, R. (2018). A P-spline based clustering approach for portfolio selection.
Expert systems with applications , vol. 95, pp. 88-103. DOI: 10.1016/j.eswa.2017.11.031. Online first: November 14, 2017.
D'Ambrosio, A., Mazzeo, G., Iorio, C. & Siciliano, R. (2017). A differential evolution algorithm for finding
the median ranking under the Kemeny axiomatic approach. Computers and Operations Research, vol. 82, pp. 126-138. DOI: 10.1016/j.cor.2017.01.017.
D'Ambrosio, A., Aria, M., Iorio, C. & Siciliano, R. (2017). Regression
trees for multivalued numerical response variables,
Expert systems with applications, vol. 62, pp. 21-28, DOI: 10.1016/j.eswa.2016.10.021
Siciliano, R., D'Ambrosio, A., Aria M. & Amodio, S. (2017) Analysis of web visit histories, part II:
Predicting navigation by Nested Stump Regression Trees. Journal of Classification, vol. 34(3), pp. 473-493. DOI: 10.1007/s00357-017-9239-5.
D'Ambrosio, A. & Heiser W.J. (2016). A recursive partitioning method
for the prediction of preference rankings based upon Kemeny distances.
Psychometrika, vol. 81 (3), pp.774-94. DOI: 10.1007/s11336-016-9505-1.
Iorio, C., Frasso, G., D'Ambrosio, A. & Siciliano R. (2016). Parsimonious
Time Series Clustering using P-Splines,
Expert Systems with Applications, vol. 52, pp. 26-38. DOI: 10.1016/j.eswa.2016.01.004
Siciliano, R., D'Ambrosio, A., Aria, M. & Amodio, S. (2016) Analysis
of web visit histories, part I: Distance-based visualization of sequence
rules.
Journal of Classification, vol. 33(2), pp. 298-324 DOI: 10.1007/s00357-016-9204-8.
Amodio, S., D'Ambrosio, A. & Siciliano, R. (2016) Accurate algorithms
for identifying the median ranking when dealing with weak and partial rankings
under the Kemeny axiomatic approach.
European Journal of Operational Research, vol. 249(2), pp. 667-676.
DOI: 10.1016/j.ejor.2015.08.048.
D'Ambrosio, A., Amodio, S. & Iorio, C. (2015) Two algorithms for finding
optimal solutions of the Kemeny rank aggregation problem for full rankings.
Electronic Journal of Applied Statistical Analysis, vol. 8(2), 197-212.
DOI: 10.1285/i20705948v8n2p197.
Catuogno, S., Allini, A. & D'Ambrosio, A. (2015). Information Perspective
and Determinants of Proportionate Consolidation in Italy. An ante IFRS
11 analysis.
Rivista dei Dottori Commercialisti, Fasc. 4, pp. 555-577.
Amodio, S., Aria, M. & D'Ambrosio, A. (2014). On concurvity in nonlinear
and nonparametric regression models.
Statistica, vol. 24(1), 81-94. DOI: 10.6092/issn.1973-2201/4599
D'Ambrosio A., Aria M. & Siciliano R. (2012). Accurate Tree-based Missing
Data Imputation and Data Fusion within the Statistical Learning Paradigm,
Journal of Classification, vol. 29(2), pp. 227-258. DOI: 10.1007/s00357-012-9108-1.
Montella A., Aria M., D'Ambrosio A. & Mauriello F. (2012). Data Mining
Techniques for Exploratory Analysis of Pedestrian Crashes.
Transportation Research Record - Journal of Transportation Research Board.
Vol. 2237/2011, pp.107-116. DOI: 10.3141/2237-12.
Montella A., Aria M., D'Ambrosio A. & Mauriello F. (2011). Analysis
of powered two-wheeler crashes in Italy by classification trees and rules
discovery.
Accident Analysis & Prevention, vol. 49, pp 58-72, DOI: 10.1016/j.aap.2011.04.025
Montella A., Aria M., D'Ambrosio A., Galante F., Mauriello F. & Pernetti,
M. (2011). Simulator evaluation of drivers' speed, deceleration and lateral
position at rural intersections in relation to different perceptual cues.
Accident Analysis & Prevention, vol. 43(6), pp. 2072-2084, DOI:
10.1016/j.aap.2011.05.030.
Montella A., Aria M., D'Ambrosio A., Galante F., Mauriello F. & Pernetti,
M. (2010). Perceptual Measures to Influence Operating Speeds and Reduce
Crashes at Rural Intersections,
Transportation Research Record - Journal of Transportation Research Board,
vol. 2149, pp. 11-20. DOI: 10.3141/2149-02
Galante F., Mauriello F., Montella A., Pernetti M., Aria M. & D'Ambrosio
A. (2010). Traffic Calming Along Rural Highways Crossing Small Urban Communities:
a Driving Simulator Experiment,
Accident Analysis & Prevention, vol. 42(6), pp. 1585-1594. DOI:
10.1016/j.aap.2010.03.017
D'Ambrosio A. & Tutore V.A. (2009). Kemeny's axiomatic approach to find
consensus ranking in tourist satisfaction,
Statistica Applicata (Italian Journal of Applied Statistics), vol
20(1), pp. 21-32
Book Chapters
Sciandra, M., D'Ambrosio, A. & Plaia, A. (2020).
Projection Clustering Unfolding: A New Algorithm for Clustering Individuals or Items in a Preference Matrix.
In: Makrides A., Karagrigoriou A., Skiadas C.H. (eds). Data Analysis and Applications 3 ,
Chapter 11, pp. 215-229. Iste-Wiley, London (UK).
Iorio C., Frasso G., D'Ambrosio A. & Siciliano R. (2018).
P-Splines Based Clustering as a General Framework: Some Applications Using Different Clustering Algorithms.
In: Mola F., Conversano C., Vichi M. (eds). Classification, (Big) Data Analysis and Statistical Learning, pp 183-190.
Springer series: Studies in Classification, Data Analysis, and Knowledge Organization. Springer, Cham. DOI: 10.1007/978-3-319-55708-3_20.
Iorio, C., Aria, M. & D'Ambrosio, A. (2015). A New Proposal for Tree
Model Selection and Visualization, in Morlini, I, Minerva, T., Vichi, M.
(Eds.) ,
Advances in Statistical Models for Data Analysis, pp. 149-156. Springer
series: Studies in Classification, Data Analysis, and Knowledge Organization.
Springer-Verlag, DOI 10.1007/978-3-319-17377-1_16.
Heiser W.J. & D'Ambrosio A. (2013). Clustering and Prediction of Rankings
within a Kemeny Distance Framework. In Berthold, L., Van den Poel, D, Ultsch,
A. (eds).
Algorithms from and for Nature and Life.pp-19-31. Springer international.
DOI: 10.1007/978-3-319-00035-0_2.
Siciliano R. & D'Ambrosio A. (2012). Statistical monitoring of tourism
in the knowledge era. In Morvillo A. (Ed.).
Advances in Tourism Studies. McGrow-Hill, pp. 231-258.
Siciliano R., Aria M., D'Ambrosio A. & Tutore V.A. (2011). Indagine
statistica sulle aspettative e priorità per soddisfare il turista a Napoli,
in Becheri E., Maggiore G. (a cura di),
XVII rapporto sul turismo italiano, Franco Angeli, pp. 449-470.
D'Ambrosio A. & Tutore V.A. (2011). Conditional classification trees
by weighting the Gini impurity measure,
New Perspectives in Statistical Modeling and Analysis, Springer series:
Studies in Classification, Data Analysis, and Knowledge Organization, DOI10.1007/978-3-642-11363-5_31,
Springer-Verlag Berlin Heidelberg, pp. 273-280
D'Ambrosio A. & Pecoraro M. (2011). Multidimensional Scaling as Visualization
tool of Web Sequence Rules, in B. Fichet et al. (eds.),
Classification and Multivariate Analysis for Complex Data Structures.
Springer series: Studies in Classification, Data Analysis, and Knowledge
Organization, Springer-Verlag, pp. 307-314. DOI: 10.1007/978-3-642-13312-1_32
Siciliano, R., Aria, M. & D'Ambrosio, A. (2008). Posterior Prediction
Modelling of Optimal Trees, in
Proceedings in Computational Statistics(COMPSTAT 2008), 18th Symposium
Held in Porto, Portugal, Brito, Paula (Ed.), Springer-Verlag, pp. 323-334
D'Ambrosio A., Aria M. & Siciliano R. (2007), Robust Tree-based Incremental
Imputation Method for Data Fusion.
Lecture notes in computer science 4723(Advances in Intelligent Data
Analysis), Springer-Verlag, pp 174-183.
Siciliano R., Aria. & D'Ambrosio A. (2006), Boosted incremental tree-based
imputation of missing data, in
Data Analysis, Classification and the Forward Search. Springer series:
Studies in Classification, Data Analysis, and Knowledge Organization. Springer-Verlag,
pp. 271-278.
Proceedings
Iorio, C., Pandolfo, G. and D'Ambrosio, A. (2023). A proposal to evaluate the solution of fuzzy clustering algorithms.
In Coretto, P., Giordano, G., La Rocca, M., Parrella, ML.& Rampichini, C. (Eds.), CLADSAG 2023. Book of Short Papers, pp. 520-523,
Pearson Italy
Baldassarre, A., Concersano, C., D'Ambrosio, A., De Rooij, M & Dusseldorp, E. (2020).
Discovering Interaction Effects Between Subject-Specific Covariates: A New Probabilistic Approach For
Preference Data. In Pollice, A., Salvati, N & Schirripa Spagnolo, F. (Eds.),
Proceedings of the 50th Scientific Meeting Of The Italian Statistical Society, pp. 1166-1170,
Pearson Italia, Milano.
Nai Ruscone, M. & D'Ambrosio, A. (2020).
Non-metric unfolding on augmented data matrix: a copula-based approach. In Pollice, A.,
Salvati, N & Schirripa Spagnolo, F. (Eds.),
Proceedings of the 50th Scientific Meeting Of The Italian Statistical Society, pp. 1189-1193,
Pearson Italia, Milano.
Feijt A.A.., Mol S.E., Espin C.A., D'Ambrosio A. & Heiser W.J. (2019).
Instructional factors that influence learning from university lectures: Opinions of students with and without disabilities.
Proceedings of the 1st Society for Research on Learning Disorders (SRLD) Conference, Padua.
D’Ambrosio A., Conversano C. & Ingrassia S. (2019). The ANVUR’s system assessing the perceived quality of
professors’ teaching effectiveness: defining a suitable performance indicator. In "Proceedings of the
Conference Innovation and Society 2029 - Statistical Methods for Evaluation", Roma (Italy), July 4-5, 2019,
Cuzzolin Editore, Roma, 43-47
Pandolfo, G., Iorio, C. & D'Ambrosio, A. (2018).
Depth-based portfolio selection. In Abbruzzo, A., Brentari, E., Chiodi, M. & Piacentino, D. (Eds.),
Proceedings of the 49th Scientific Meeting Of The Italian Statistical Society, pp. 1061-1066,
Pearson Italia, Milano.
Sciandra, M., D'Ambrosio, A. & Plaia, A. (2018).
A Projection Pursuit Algorithm for Preference Data. In Christos H. Skiadas (Ed.),
Proceedings of the 5th Stochastic Modeling Techniques and Data Analysis International Conference with
Demographics Workshop, p. 101, ISAST, Athens.
Iorio, C. & D'Ambrosio, A. (2017). Time Series Clustering for Portfolio Selection.
In F. Greselin, F. Mola, Ma. Zenga (Eds.), 11th Scientific Meeting of the CLAssification and Data Analysis Group
of the Italian Statistical Society,
pp. 11-16, Universitas Studiorum, Mantova
D'Ambrosio, A., Iorio, C. & Siciliano, R. (2017). Constrained consensus bucket order.
In F. Greselin, F. Mola, Ma. Zenga (Eds.), 11th Scientific Meeting of the CLAssification and Data Analysis Group
of the Italian Statistical Society,
pp. 1-6, Universitas Studiorum, Mantova
D'Ambrosio, A., Frasso, G., Iorio, C. & Siciliano, R (2015). Probabilistic
boosted-oriented clustering of time series. In Mola, Coversano (Eds.),
10th scientific meeting of the Classification and Data Analysis Group,
Book of abstracts, pp. 61-64, CUEC Editrice.
Iorio, C., D'Ambrosio, A., Frasso, G & Siciliano, R. (2015). Parsimonious
clustering of time series. In Mola, Coversano (Eds.),
10th scientific meeting of the Classification and Data Analysis Group,
Book of abstracts, pp. 226-229, CUEC Editrice.
Mazzeo, G., D'Ambrosio, A. & Siciliano, R. (2015). Accurate algorithms
for consensus ranking detection. In Mola, Coversano (Eds.),
10th scientific meeting of the Classification and Data Analysis Group,
Book of abstracts, pp. 255-258, CUEC Editrice.
Iorio, C., Aria, M. & D'Ambrosio, A. (2013). Visual model representation
and selection for classification and regression trees. In Minerva, Morlini,
Palumbo (Eds.),
9th meeting of the Classification and Data Analysis Group, Book of
short papers, pp. 276-279, CLEUP.
D'Ambrosio A. (2012). Missing Data Imputation within the Statistical learning
Paradigm.
Proceedings of the 46th Scientific Meeting Of The Italian Statistical
Society.
Piscitelli A. & D'Ambrosio A. (2012). Assessing assumptions for data
fusion procedures.
Proceedings of the 46th Scientific Meeting Of The Italian Statistical
Society.
Siciliano R., Tutore V.A., Aria M., D'Ambrosio A. (2010). Trees with leaves
and without leaves. In
45th scientific meeting of the Italian Statistical Society.
D'Ambrosio A. & Heiser W.J. (2009). Decision Trees for Preference Rankings.
Invited talk:
Classification and Data Analisys 2009, Book of short papers (Catania,
September 9-11, 2009), CLEUP Padova, pp. 133-136.
Tutore V.A. & D'Ambrosio A. (2009).Three-Way Data Analysis by Tree-Based
Partitioning.
Classification and Data Analisys 2009,Book of short papers (Catania,
September 9-11, 2009), CLEUP Padova, pp. 641-644.
D'Ambrosio, A. & Pecoraro M. (2008). Web Structure Mining through implicit
behaviors via Multidimensional Scaling, in
Proceedings of the First joint meeting of the Sociètè Francophone de Classification
and the Classification and Data Analysis Group of the Italian Statistical
Society(SFC-CLADAG 2008), pp. 261-264.
Aria M. & D'Ambrosio A. (2008). A non parametric pre-grafting procedure
for data fusion,
Proceedings of the MTISD 2008(Metodi, Modelli e Tecnologie dell'Informzione
a Supporto delle Decisioni), Coordinamento SIBA, Università del Salento,
pp. 333-336
Giordano G. & D'Ambrosio A. (2008). Multi-Class Budget Tree as weak
learner for ensemble procedures,
proceedings della XLIV riunione scientifica della Società Italiana di
Statistica
Aria M., D'Ambrosio A. & Siciliano R. (2007), Robust Incremental Trees
for Missing Data Imputation and Data Fusion.
Classification and Data Analisys 2007, Book of short papers (Macerata,
September 12-14, 2007), EUM macerata, pp. 287-290.
Siciliano R., Aria. & D'Ambrosio A. (2005), Boosted stump algorithm
for missing data incremental imputation. Invited talk:
CLADAG 2005, Book of Short Papers (Parma, June 6-8, 2005), MUP, Parma,
pp. 161-164.