next up previous contents
Next: B.2 Perturbative analysis of Up: B. Appendix B Previous: B. Appendix B   Contents

B.1 Elliptic Functions

The Jacobi elliptic functions are standard forms of elliptic functions [72]. The three basic functions are denoted by sn$ (u,k),$cn$ (u,k)$ and sn$ (u,k)$, where $ k$ is the modulus such that $ 0<k^2<1$. They arise from the inversion of the incomplete elliptic integral of the first kind:

$\displaystyle u=F(\phi,k)=\int_0^\phi \frac{d\varphi}{\sqrt{1-k^2
 \sin^2\varphi}} \quad.$ (B.1)

The inverse function of $ F(u,k)$ is given by the Jacobi amplitude am$ (u,k)$

$\displaystyle \phi=$am$\displaystyle (u,k)=F^{-1}(u,k) \quad.$ (B.2)

The Jacobi elliptic functions can be defined as follows:

  sn$\displaystyle (u,k)=\sin\phi=\sin
 \left(F^{-1}(u,k)\right)=\sin\left(\text{am}(u,k)\right)$ (B.3)
  cn$\displaystyle (u,k)=\cos\phi=\cos
 \left(F^{-1}(u,k)\right)=\cos\left(\text{am}(u,k)\right)$ (B.4)
  dn$\displaystyle (u,k)=\sqrt{1-\sin^2\phi}=\sqrt{1-\sin^2\left(\text{am}(u,k)\right)}
 \quad.$ (B.5)

By introducing $ x=\sin\varphi$ as new integration variable in Eq. (B.1), one obtains the following new expression of the incomplete elliptic integral of the first kind:

$\displaystyle u=\int_0^s \frac{dx}{\sqrt{(1-k^2x^2)(1-x^2)}} \quad,$ (B.6)

where $ s=\sin\phi$. By taking into account that $ u=$sn$ ^{-1}(\sin\phi,k)$ we may also write the last equation as

$\displaystyle \int_0^s \frac{dx}{\sqrt{(1-k^2x^2)(1-x^2)}}=$sn$\displaystyle ^{-1}(s,k) \quad.$ (B.7)

Similar formulas can be written for cn$ (u,k)$ and dn$ (u,k)$. The Jacobi elliptic function are doubly periodic in $ K$ and $ K'$ in the following sense:

  sn$\displaystyle (u+2 m K + i2nK',k)=(-1)^{m}$sn$\displaystyle (u,k)$ (B.8)
  cn$\displaystyle (u+2 m K + i2nK',k)=(-1)^{m+n}$cn$\displaystyle (u,k)$ (B.9)
  dn$\displaystyle (u+2 m K + i2nK',k)=(-1)^{n}$dn$\displaystyle (u,k) \quad,$ (B.10)

where $ m,n\in\mathbb{Z}$, $ i=\sqrt{-1}$, $ K(k)$ is the complete elliptic integral of the first kind:

$\displaystyle K(k)=F(\pi/2,k)=\int_0^{\pi/2} \frac{d\varphi}{\sqrt{1-k^2
 \sin^2\varphi}}=\int_0^{1} \frac{dx}{\sqrt{(1-k^2 x^2)(1-x^2)}}
 \quad,$ (B.11)

$ K'(k)=K(k')$ and $ k'=\sqrt{1-k^2}$ is the complementary modulus. The Jacobi elliptic functions sn$ (u,k),$cn$ (u,k),$dn$ (u,k)$ can be seen as doubly periodic generalizations of the trigonometric function satisfying the conditions:

  sn$\displaystyle (u,0)=\sin u$ (B.12)
  cn$\displaystyle (u,0)=\cos u$ (B.13)
  dn$\displaystyle (u,0)=1 \quad.$ (B.14)

In addition, they are related through the following identities:

  sn$\displaystyle ^2(u,k)+$cn$\displaystyle ^2(u,k)=1$ (B.15)
  $\displaystyle k^2$sn$\displaystyle ^2(u,k)+$dn$\displaystyle ^2(i,k)=1$ (B.16)
  $\displaystyle k^2$cn$\displaystyle ^2(u,k)+k'^2=$dn$\displaystyle ^2(u,k)$ (B.17)
  cn$\displaystyle ^2(u,k)+k'^2$sn$\displaystyle ^2(u,k)=$dn$\displaystyle ^2(u,k) \quad.$ (B.18)


next up previous contents
Next: B.2 Perturbative analysis of Up: B. Appendix B Previous: B. Appendix B   Contents
Massimiliano d'Aquino 2005-11-26