next up previous contents
Next: 1.2.1.2 Anisotropy Up: 1.2.1 First-order Variation of Previous: 1.2.1 First-order Variation of   Contents

1.2.1.1 Exchange

Let us take the first-order variation of Eq. (1.38):

$\displaystyle \delta F_$ex$\displaystyle =F_$ex$\displaystyle (\textbf{{m}}+\delta\textbf{{m}})-F_$ex$\displaystyle (\textbf{{m}})=\int_\Omega
 2A\nabla\textbf{{m}}\cdot\nabla\delta\textbf{{m}} dV \quad,$ (1.54)

where $ \nabla\textbf{{m}}\cdot\nabla\delta\textbf{{m}}$ is a compact notation for $ \nabla m_x\cdot\nabla\delta m_x+\nabla m_y\cdot\nabla\delta
m_y +\nabla m_z\cdot\nabla\delta m_z$. Now we proceed in the derivation for the $ x$ component, the remaining $ y,z$ can be treated analogously. By applying the vector identity

$\displaystyle \textbf{v}\cdot\nabla f=\nabla\cdot(f\textbf{v})-f\nabla\cdot\textbf{v}\quad,$ (1.55)

in which we put $ f=\delta m_x$ and $ \textbf{v}=\nabla m_x$, one obtains:

$\displaystyle \int_\Omega \nabla m_x\cdot\nabla\delta m_x  dV=\int_\Omega
 \bi...
...delta m_x A \nabla m_x) - \delta m_x
 \nabla\cdot(A\nabla m_x) \big] dV \quad.$ (1.56)

By using the divergence theorem, the first term can be written as surface integral over the boundary $ \partial
\Omega$

$\displaystyle \int_\Omega \nabla m_x\cdot\nabla\delta m_x
  dV=\int_{\partial\...
...\textbf{n}}  dS -
 \int_\Omega \delta m_x \nabla\cdot(A\nabla m_x)  dV \quad.$ (1.57)

By substituting the latter equation and the analogous for the $ y,z$ components into Eq. (1.54), one ends up with:

$\displaystyle \delta F_$ex$\displaystyle =-\int_\Omega \Big[
 2\nabla\cdot(A\nabla\textbf{{m}})\cdot\delta...
... \textbf{{m}}}{\partial \textbf{n}}\cdot\delta
 \textbf{{m}}\right]  dS \quad,$ (1.58)

which is the exchange contribution to the first-order variation of the free energy functional.
next up previous contents
Next: 1.2.1.2 Anisotropy Up: 1.2.1 First-order Variation of Previous: 1.2.1 First-order Variation of   Contents
Massimiliano d'Aquino 2005-11-26