next up previous contents
Next: 3.2.4 Numerical results Up: 3.2 Comparison between Damping Previous: 3.2.2 Spatial Magnetization uniformity   Contents

3.2.3 Uniform mode approximation

To this end, we model the thin-film as a flat ellipsoid, characterized by the demagnetizing factors $ N_x$, $ N_y$, $ N_z$. such that $ N_x\ll N_z,N_y\ll N_z$. The demagnetizing factors can be computed as function of the aspect ratios $ c/a$ and $ b/a$ by means of the following expressions [71]:

  $\displaystyle N_x=\frac{\cos\phi \cos\theta}{\sin^3\theta
 \sin^2\psi}\left[F(k,\theta)-E(k,\theta)\right]\quad,$ (3.24)
  $\displaystyle N_y=\frac{\cos\phi \cos\theta}{\sin^3\theta
 \sin^2\psi\cos^2\psi...
...si F(k,\theta) -
 \frac{\sin^2\psi \sin\theta\cos\theta}{\cos\phi}
 \right] ,$ (3.25)
  $\displaystyle N_z=\frac{\cos\phi \cos\theta}{\sin^2\theta
 \cos^2\psi}\left[\frac{\sin\theta
 \cos\phi}{\cos\theta}-E(k,\theta)\right]\quad,$ (3.26)

where $ \cos\theta=c/a$, $ \cos\phi=b/a$, and the angle $ \psi$ is defined by
$\displaystyle \sin\psi=\left[\frac{1-(b/a)^2}{1-(c/a)^2}\right]^{1/2}=
\frac{\sin\phi}{\sin\theta}=k\quad;$     (3.27)

$ F(k,\theta)$ and $ E(k,\theta)$ are the incomplete elliptic integrals [72] of the first and second kind respectively. All the angles $ \theta, \phi, \psi$ are intended to belong to the interval $ [0,\pi/2]$. In our case, the application of the above formulas gives:

  $\displaystyle N_x=0.0062$   $\displaystyle ,$   $\displaystyle N_y=0.0175$   $\displaystyle ,$   $\displaystyle N_z=0.9763\quad,$ (3.28)

which, give the following values for the $ D_x,D_y,D_z$ coefficients (shape and magnetocrystalline anisotropy):
$\displaystyle D_x=N_x-\frac{2K_1}{\mu_0M_s^2}=1.2\times 10^{-3},    D_y=N_y,
   D_z=N_z \quad.$     (3.29)

We assume that the external field $ \textbf{h}_$a is applied along the $ y$ axis:

$\displaystyle \textbf{h}_$a$\displaystyle =h_a \mathbf{e}_y \quad.$ (3.30)

We compute the critical time instants $ t_1,t_2,T_s$ expressed by Eqs. (2.53)-(2.55), slightly generalized [50] for the case $ D_x,D_y,D_z\neq 0$:

  $\displaystyle t_1=\int_{u_0}^{u_1} \frac{du}{k(D_z-D_x)\sqrt{1-p^2 \cos^2 u -
 [a_y-(p/k)\sin u]^2}} \quad,$ (3.31)
  $\displaystyle t_2=t_1+2 \int_{u_1}^{u_2} \frac{du}{k(D_z-D_x)\sqrt{1-p^2 \cos^2
 u - [a_y-(p/k)\sin u]^2}} \quad,$ (3.32)
  $\displaystyle T_s=\int_{u_0}^{u_2} \frac{du}{k(D_z-D_x)\sqrt{1-p^2 \cos^2 u -
 [a_y-(p/k)\sin u]^2}} \quad.$ (3.33)

where the parameters are given by:

  $\displaystyle k^2=(D_z - D_y)/(D_z - D_x)\quad,$ (3.34)
  $\displaystyle a_y=-h_a/(D_z-D_y) \quad,$ (3.35)
  $\displaystyle p^2=k^2 a_y^2+\frac{D_z-2 g_0}{D_z-D_x} \quad,$ (3.36)
  $\displaystyle g_0=\frac{D_x}{2} \quad.$ (3.37)

Notice that here we are supposing that the initial state is $ \textbf{{m}}=\mathbf{e}_x$. Similarly to the derivation presented in section 2.4.3, in equations (3.31)-(3.33) the value of the parameters $ u_0$, $ u_2$ can be found by using parametric equations

$\displaystyle m_x=-p\cos u \quad,\quad m_y=a_y+\frac{p}{k} \sin u \quad,$ (3.38)

of the elliptic curve on which magnetization motion occurs:

$\displaystyle m_x^2+k^2(m_y-a_y)^2=p^2 \quad,$ (3.39)

to find the intersections with the unit circle $ m_x^2+m_y^2=1$. The value $ u_1$ can be found from the intersection between the elliptical trajectory (3.39) with the ellipse $ m_x^2+k^2m_y^2=k^2$ delimiting the high energy region. The above technique can be applied to whatever external field applied in the $ x,y$ plane. When the field is applied along one axis, as in our case, it is possible to carry out the integration of conservative LLG equation ($ \alpha=0$) where $ m_x,m_y$ are given in the parametric form (3.38):

$\displaystyle \frac{du}{\sqrt{1-p^2 \cos^2 u - [a_y-(p/k)\sin
 u]^2}}=k(D_z-D_x)dt  ,$ (3.40)

which gives the relation between the parametric variable $ u$ and time. In fact it is possible [42,50] to bring Eq. (3.40) in the canonical form which can be integrated by means of Jacobi elliptic3.3 functions [72]. In this way one can obtain the magnetization dependance on time in exact analytical form and exact expression of the critical instants (3.31)-(3.33). It is also shown in [42] that, in the case of $ \textbf{h}_$a$ =h_a\mathbf{e}_y$, the critical value of the external applied field for precessional switching is still one half of the Stoner-Wohlfarth field:

$\displaystyle h_c=\frac{D_y-D_x}{2}=\frac{h_\text{SW}}{2} \quad.$ (3.41)


next up previous contents
Next: 3.2.4 Numerical results Up: 3.2 Comparison between Damping Previous: 3.2.2 Spatial Magnetization uniformity   Contents
Massimiliano d'Aquino 2005-11-26