next up previous contents
Next: 4.2.2 Constraints for magnetization Up: 4.2 The mathematical model Previous: 4.2 The mathematical model   Contents

4.2.1 General properties of the effective field

By considering the variational derivative of Eq. (4.3) with respect to the vector field $ \textbf{{m}}$ and by using Eqs. (4.4)-(4.5) and the boundary condition (4.6), one can readily derive that the effective field is constituted by the sum of four terms: the exchange field $ \textbf{h}_$ex, the magnetostatic field $ \textbf{h}_$m, the anisotropy field $ \textbf{h}_$an and the applied field $ \textbf{h}_$a:

$\displaystyle \textbf{h}_{\text{eff}}(\textbf{{m}},t) = -\frac{\delta g}{\delta...
...xt{ex} +
 \textbf{h}_\text{m}+ \textbf{h}_\text{an}+\textbf{h}_\text{a}(t)   ,$ (4.7)

where the explicit dependence of $ \textbf{h}_{\text{eff}}$ on time is related to the dependence on time of $ \textbf{h}_$a. The first three terms in Eq. (4.7) can be related to the vector field $ \textbf{{m}}$ through the following equations (sections 1.2.2 and 3.1):

  $\displaystyle \textbf{h}_$ex$\displaystyle = \frac{2A}{\mu_0 M_s^2}   \nabla^2 \textbf{{m}} ,$ (4.8)
  $\displaystyle \textbf{h}_$m$\displaystyle =
 -\frac{1}{4\pi}\nabla\!\!\int_{\Omega}
 \!\!\nabla'\!\left(\fr...
...right)\cdot
 \textbf{{m}}(\textbf{r}^{\prime})   dV_{\textbf{r}^{\prime}}   ,$ (4.9)
  $\displaystyle \textbf{h}_$an$\displaystyle = \frac{2K_1}{\mu_0 M_s^2}   \mathbf{e}_$an$\displaystyle (\textbf{r}) (\mathbf{e}_$an$\displaystyle (\textbf{r})
 \cdot \textbf{{m}}(\textbf{r}))  ,$ (4.10)

From the Eqs. (4.4)-(4.5), (4.6) and (4.8)-(4.10), one can easily prove that the sum of the first three terms of the effective field (4.7) is a formally self-adjoint operator acting on the vector field $ \textbf{{m}}$ in a suitable subspace of $ \mathbb{L}^2(\Omega)$ with respect to the usual scalar product in $ \mathbb{L}^2(\Omega)$:

$\displaystyle \left(\textbf{v},\textbf{w}\right)_{\mathbb{L}^2(\Omega)}=
 \int_{\Omega} \textbf{v}(\textbf{r}) \cdot \textbf{w}(\textbf{r}) dV   .$ (4.11)

In other terms the effective field (4.7) can be written in the following form

$\displaystyle \textbf{h}_{\text{eff}}(\textbf{r},t)= - \mathcal{C} \textbf{{m}}+\textbf{h}_\text{a}(t)$ (4.12)

where $ \mathcal{C}$ is a formally self-adjoint integro-differential operator in $ \mathbb{L}^2(\Omega)$.
next up previous contents
Next: 4.2.2 Constraints for magnetization Up: 4.2 The mathematical model Previous: 4.2 The mathematical model   Contents
Massimiliano d'Aquino 2005-11-26