next up previous contents
Next: 4.2.1 General properties of Up: 4. Geometric integration of Previous: 4.1 Introduction   Contents

4.2 The mathematical model

It is very useful for the following discussion, to recall the dimensionless form (1.95) of LLG equation:

$\displaystyle \frac{\partial \textbf{{m}}}{\partial t} =
 - \textbf{{m}}\times ...
...\textbf{{m}},t)
 - \alpha \frac{\partial \textbf{{m}}}{\partial t} \right)   ,$ (4.1)

with the usual normalized quantities introduced in section 1.3.4. The LLG equation (4.1) is implicit with respect to $ \partial \textbf{{m}}/\partial t$, and it can be transformed in the equivalent normalized Landau-Lifshitz form of Eq. (1.87):

$\displaystyle \frac{\partial \textbf{{m}}}{\partial t} =
 - \frac{1}{1+\alpha^2...
...{m}}
 \times ( \textbf{{m}}\times \textbf{h}_{\text{eff}}(\textbf{{m}},t))   ,$ (4.2)

where $ \partial \textbf{{m}}/\partial t$ is explicitly expressed. This form of LLG equation is the most commonly used for numerical integration. As seen in chapter 1, the normalized effective field $ \textbf{h}_{\text{eff}}$ can be defined by the variational derivative $ \textbf{h}_{\text{eff}}= -\delta g /
\delta \textbf{{m}}$ of the normalized micromagnetic free energy functional, formed by the sum of normalized exchange, magnetostatic, anisotropy and Zeeman energy, respectively:

$\displaystyle g(\textbf{{m}};\textbf{h}_$a$\displaystyle )=\int_\Omega \left[ \frac{A}{\mu_0 M_s^2} (\nabla
 \textbf{{m}}...
...f{e}_\text{an})^2 \right]-\textbf{h}_\text{a}\cdot
 \textbf{{m}}\right] dv  ,$ (4.3)

where $ A$ is the exchange constant, $ K_1$ is the uniaxial anisotropy constant, $ \mathbf{e}_$an is the easy axis unit-vector and $ \textbf{h}_$m is the magnetostatic (demagnetizing) field, which is the solution of the boundary value problem:
    $\displaystyle \nabla\cdot \textbf{h}_$m$\displaystyle =-\nabla\cdot\textbf{{m}}$    in $\displaystyle \Omega   ,$ (4.4)
    $\displaystyle \textbf{n}\times\left[\textbf{h}_\text{m}\right]_{\partial
\Omega...
...ft[\textbf{h}_\text{m}\right]_{\partial
\Omega}=\textbf{n}\cdot\textbf{{m}}  .$ (4.5)

In Eqs. (4.4)-(4.5), we have denoted with $ \textbf{n}$ the outward normal to the boundary $ \partial
\Omega$ of the magnetic body, and with $ [\textbf{h}_$m$ ]_{\partial \Omega}$ the jump of the vector field $ \textbf{h}_$m across $ \partial
\Omega$. The magnetization $ \textbf{{m}}(\textbf{r},t)$ is also assumed to satisfy the following condition at the body surface:

$\displaystyle \frac{\partial \textbf{{m}}}{\partial \textbf{n}}=\mathbf{0}   ,$ (4.6)

which is related to the presence of first (laplacian) term in Eq. (4.3).

Subsections
next up previous contents
Next: 4.2.1 General properties of Up: 4. Geometric integration of Previous: 4.1 Introduction   Contents
Massimiliano d'Aquino 2005-11-26