Papers

  1. P. Baldi, E. Haus, On the existence time for the Kirchhoff equation with periodic boundary conditions, preprint 2018 (arxiv:1805.01189). (pdf)
  2. P. Baldi, M. Berti, E. Haus, R. Montalto, Time quasi-periodic gravity water waves in finite depth, Invent. math., published online 27 July 2018, DOI: https://doi.org/10.1007/s00222-018-0812-2 (pdf) (full-text read-only version by Springer Nature SharedIt)
  3. P. Baldi, E. Haus, C. Mantegazza, Non-existence of theta-shaped self-similarly shrinking networks moving by curvature, Comm. Partial Differential Equations 43 (2018), no. 3, 403-427. (pdf)
  4. T. Alazard, P. Baldi, D. Han-Kwan, Control of water waves, J. Eur. Math. Soc. (JEMS) 20 (2018), no. 3, 657-745. (pdf)
  5. P. Baldi, E. Haus, R. Montalto, Controllability of quasi-linear Hamiltonian NLS equations, J. Differential Equations 264 (2018), no. 3, 1786-1840. (pdf)
  6. P. Baldi, E. Haus, A Nash-Moser-Hörmander implicit function theorem with applications to control and Cauchy problems for PDEs, J. Funct. Anal. 273 (2017), no. 12, 3875-3900. (pdf)
  7. P. Baldi, G. Floridia, E. Haus, Exact controllability for quasi-linear perturbations of KdV, Anal. PDE 10 (2017), no. 2, 281-322. (pdf)
  8. P. Baldi, M. Berti, R. Montalto, KAM for autonomous quasi-linear perturbations of KdV, Ann. Inst. H. Poincaré (C) Anal. Non Linéaire 33 (2016), no. 6, 1589-1638. (pdf), (open access link)
  9. P. Baldi, M. Berti, R. Montalto, KAM for autonomous quasi-linear perturbations of mKdV, Boll. Unione Mat. Ital. 9 (2016), no. 2, 143-188. (pdf)
  10. T. Alazard, P. Baldi, Gravity capillary standing water waves, Arch. Ration. Mech. Anal. 217 (2015), no. 3, 741-830. (pdf)
  11. P. Baldi, M. Berti, R. Montalto, KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation, Math. Annalen 359 (2014), no. 1-2, 471-536. (pdf)
  12. P. Baldi, Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type, Ann. Inst. H. Poincaré (C) Anal. Non Linéaire 30 (2013), no. 1, 33-77. (pdf)
  13. P. Baldi, J. Toland, Steady periodic water waves under nonlinear elastic membranes, J. Reine Angew. Math. 652 (2011), 67-112. (pdf)
  14. P. Baldi, J. Toland, Bifurcation and secondary bifurcation of heavy periodic hydroelastic travelling waves, Interfaces Free Bound. 12 (2010), no. 1, 1-22. (pdf)
  15. P. Baldi, Periodic solutions of forced Kirchhoff equations, Ann. Sc. Norm. Sup. Pisa, Cl. Sci. (5), Vol. 8 (2009), no. 1, 117-141. (pdf)
  16. P. Baldi, M. Berti, Forced vibrations of a nonhomogeneous string, SIAM J. Math. Anal. 40 (2008), no. 1, 382-412. (pdf)
  17. P. Baldi, M. Berti, Periodic solutions of nonlinear wave equations for asymptotically full measure sets of frequencies, Rend. Lincei Mat. Appl. 17 (2006), no. 3, 257-277. (pdf)
  18. P. Baldi, Quasi-periodic solutions of the equation v_{tt} - v_{xx} + v^3 = f(v), Discr. Cont. Dynam. Systems 15 (2006), no. 3, 883-903. (pdf)
  19. Expository papers

  20. P. Baldi, M. Berti, E. Haus, R. Montalto, KAM for gravity water waves in finite depth, Rend. Lincei Mat. Appl. 29 (2018), no. 2, 215-236. (pdf)
  21. P. Baldi, E. Haus, C. Mantegazza, On the Classification of Networks Self-Similarly Moving by Curvature, Geometric Flows 2 (2017), no. 1, 125-137. (pdf)
  22. P. Baldi, E. Haus, C. Mantegazza, Networks self-similarly moving by curvature with two triple junctions, Rend. Lincei Mat. Appl. 28 (2017), no. 2, 323-338. (pdf)
  23. P. Baldi, M. Berti, R. Montalto, KAM for quasi-linear KdV, C. R. Acad. Sci. Paris, Ser. I 352 (2014), no. 7-8, 603-607. (pdf)
  24. P. Baldi, M. Berti, R. Montalto, A note on KAM theory for quasi-linear and fully nonlinear forced KdV, Rend. Lincei Mat. Appl. 24 (2013), no. 3, 437-450. (pdf)

(update 31/07/2018)